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Abstract. Universal cybernetics is the study of control and communications in living and non-living systems. In this 
paper the universal cybernetics duality principle (UCDP), first identified in control theory in 1978 and expressing a 
cybernetic duality behavior for our universe, is reviewed. The review is given on the heels of major prizes given to 
physicists for their use of mathematical-dualities in solving intractable problems in physics such as those of cosmology’s 
‘dark energy’, an area that according to a recent New York Times article has become “a cottage industry in physics 
today”. These dualities are not unlike those of our UCDP, further enhanced with physical-dualities. For instance, in 2008 
the UCDP guided us to the derivation of the laws of retention in physics, dealing with dark energy physics (which is 
responsible for the observed volume increase of our Universe as it ages) as the space-penalty dual of the laws of motion 
in physics. The UCDP has also guided us to the derivation of significant results in other fields such as: 1) in matched 

processors quantized control that has applications in the modeling of the central-nervous-system (CNS) mechanisms that 
control movements; 2) in radar designs where the discovery of latency theory, the time-penalty dual of information-
theory, has led us to high-performance radar solutions that evade the use of ‘big data’ in the form of SAR imagery of the 
earth; and 3) in the unveiling of biological lifespan bounds where the life-expectancy of an adult organism is sensibly 
predicted through lingerdynamics, the discovered time-penalty dual of thermodynamics, which relates adult lifespan to 
either: 1) the ratio of body size to nutritional consumption rate (NCR); or 2) the specific heat-capacity of the adult 
organism; or 3) the ratio of NCR energy to an entropic volume energy, a type of ‘dark energy’ responsible for the 
decreased mass density exhibited by an organism as it ages. 
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1. INTRODUCTION 

 
Control and communication issues of living and nonliving systems are studied in cybernetics [1]. Its applications 
are thus widespread since efficient as well as affordable systems are inherently arrived at via sensible control and 
communication system designs. A major problem in cybernetics is the identification of basic rules leading to these 
systems. Among these basic rules one finds the universal cybernetics duality principle (or UCDP), first identified 
in 1978 [2] in control theory [3], with contributions in: 1) dark energy studies in cosmology [4] via its novel laws 
of retention in physics [5]; 2) the modeling of the central nervous system (CNS) mechanics [6] via its novel 
Matched Processors for quantized control [7]; 3) the addressing of big data issues of knowledge aided high-
performance radar [8]-[12] via its novel latency-information theory; and 4) the derivation of sensible lifespan 
bound for adult organisms [13] via its novel linger-thermo theory [14]. In this paper a brief review will be given of 
the main theoretical as well as practical results derived through the UCDP with references often made to earlier 
publications. The UCDP in then applied to lifespan bounds for adult organisms where several new results are 
presented in this paper, including the connection of these lifespan bounds to dark energy studies in physics [15]. 
    The UCDP is simply stated as, “synergistic physical and mathematical dualities naturally arise in efficient 
system designs.” This statement is interestingly consistent with a late 2014 New York Times article [16] which 
‘prominently’ notes, as part of a report on major prizes given to scientists, that the use of mathematical dualities 
has become, “a cottage industry in physics today.” This is noted to be the case since they allow physicists to study 
intractable physics problems such as those of the dark energy that drives the expansion of our Universe, where this 

dark energy is noted to result in an increase of the volume and thus a decrease in the mass-energy density of the 

Universe as it ages. In this paper it will be seen that lifespan bounds for adult organisms can also be expressed via 

a novel UCDP based thermodynamics entropy study of flexible-phase mediums (such as liquid water at a 
temperature of 310 K) [14] in terms of a decrease in their mass density as they age. In this way UCDP entropic 
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forces are unveiled as the source of our mass density decrease as we age, thus establishing them as a dark energy 

source that naturally extends to cosmological studies of an aging Universe.  
    On the other hand, examples of physical dualities can be found among the physical entities of motion and 
retention problems where one notes, for instance, that a vacuum and a black hole form together a physical 
motion/retention dual in the sense that a vacuum may be viewed as a ‘light’ medium that exhibits the least 
resistance to motion, while a black hole may be viewed as a ‘dark’ medium that exhibits the least resistance to 
retention. Similarly, certainty and uncertainty space-time assumptions form a motion/retention dual in the sense 
that a certainty assumption is used in the derivation of the laws of motion started by Newton [17], while an 
uncertainty assumption, modeled probabilistically, is used in the derivation of the laws of retention [5]. 
    Examples of mathematical dualities are also found among the mathematical entities of motion and retention 
problems where one notes, for instance, that speed and pace form a mathematical motion/retention dual in the 
sense that in both cases the ratio of two physical quantities define them. In the case of speed it is the ratio of a 
space-dislocation over a time-penalty, while in the case of pace it is the ratio of a time-dislocation (or time duration 
of some knowledge) over a space-penalty (or storage space). 
    In particular, the UCDP has led us to the discovery of physical and mathematical duals for important scientific 
theories, such as: 1) the laws of motion in physics (used in the study of the space-dislocation of mass-energy, that 
in turn suffers a present to future time-penalty with the efficiency of the motion measured by the mass-energy’s 
speed, with symbol v, and defined as the ratio of space-dislocation with symbol s, in SI meter units, to time-penalty 
with symbol D, in SI sec units, thus v=s/D); 2) information-theory [18] (used in the study of past to present time-

dislocations of information in information-sources and information-retainers, that in turn suffer a space-penalty 
that is measured by two different stationary metrics: namely, the mathematical Shannon’s info-source entropy with 
symbol H, in info-bit units, and a novel [19] physical info-retainer entropy with symbol N, in info-surface-area m2 
units); and 3) thermodynamics [20] [21] (used in the study of past to present time-dislocations of temperature in 
thermal-sources and thermal-retainers, that in turn suffer a space-penalty that is measured by two different dynamic 

metrics: namely, the mathematical Boltzmann’s thermal-source entropy with symbol Ĥ , in thermo-bit units, and 

the novel [19] [22] physical thermal-retainer entropy with symbol N̂ , in thermo-surface-area m2 units, which is 

equal to the surface area of a spherical medium given by 
2 4ˆ rN π=  where r is the radius of the sphere whose 

mass is modeled as a point-mass M residing at its center).  The thermal-sources and thermal-retainers are said to be 

dynamic in the sense that their Ĥ  and N̂  measures, respectively, continuously increase with the passing of time. 

This notion is supported by two observations. The first is the 2nd law of thermodynamics that states that the 

Boltzmann entropy S in J/K units continuously increases with time and thus implies the same for Ĥ  since 

Ĥ =S/kln2=log2Ω where k is the Boltzmann constant in J/K units and Ω is the total number of possible medium 
microstates (a microstate is a microscopic configuration of a thermodynamic system that the system may occupy 
with a certain probability in the course of its thermal fluctuations).  The second are cosmological observations like 
the cosmic microwave black-body background radiation that supports the Big Bang theory [23] that our Universe 

started in a highly dense state and then expanded which is consistent with N̂  continuously increasing. 

    The duality scientific theories that have been discovered through the UCDP for the laws of retention, 
information theory and thermodynamics are respectively: 1) the laws of retention in physics  [5] (used in the study 
of the past to present time-dislocation of mater-viscidity, the retention dual of mass-energy in motion, that in turn 

suffers a space-penalty with the efficiency of the retention measured by the mater-viscidity’s pace, with symbol Π, 

and defined as the ratio of time-dislocation with symbol τ, in SI sec units, to space-penalty with symbol V, in SI m3 

units, thus Π=τ/V, where viscidity has Pa.sec viscosity units and mater has kg.m5/sec3 units are the retention duals 
of energy and mass, respectively); 2) latency-theory (used in the study of the space-dislocation of information by 
latency-processors and latency-movers, that in turn suffer a present to future time-penalty that is measured by two 
different novel [19] stationary metrics: namely, the mathematical latency-processor ectropy with symbol K, in lat-
bor units—bor stands for binary operator or gate and the number of them denotes the number of gate delays from 
input to output of the processor—and the physical latency-mover ectropy with symbol A, in lat-sec units, where 
ectropy is the time dual of entropy); and 3) lingerdynamics (used in the study of the space-dislocation of 
temperature by linger-processors and linger-movers, that in turn suffer a present to future time-penalty that is 
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measured by two different novel [19], [22] dynamic metrics: namely, the mathematical linger-processor ectropy 

with symbol K̂ , in linger-bor units, and the physical linger-mover ectropy with symbol Â , in linger-sec units, 

given by vrA / ˆ π=  and denoting half the period of perpetual circular rotation on a spherical medium of r radius 

where v is the speed of circular motion at a distance r from the center of the sphere whose mass is modeled as a 
point-mass M residing at its center).  The linger-processors and linger-movers are said to be dynamic in the sense 

that their respective K̂  and Â  measures continuously increase with the passing of time. This dynamic behavior is 

supported by theoretical studies that have revealed basic relationships between  K̂  and Ĥ , and Â  and N̂ . The 

first is the quadratic relationship HK ˆˆ 2 =  which implies that as the thermo-source entropy Ĥ  increases with 

time so does the linger-processor ectropy K̂ . The second is GMVGMrNA 4/ 34/ˆ ˆ 2 ππ ==  which implies 

that as the thermo-retainer entropy N̂ , or equivalently the spherical volume V of the medium, increases with time 

so does the linger-mover ectropy Â . 
    Using the aforementioned duality definitions as background material our review of the UCDP will be presented 
as follows. In Section 2 the identification of the UCDP in Kalman’s Linear Quadratic Gaussian (LQG) for 
‘continuous’ control is presented. In Section 3 the Matched Processors methodology for ‘quantized’ control is 
noted. In Section 4 the laws of retention dual for a selection of the laws of motion in physics are reviewed. In 
Section 5 latency-information theory, including latency theory and information theory, is reviewed which is the 
basis of a novel high-performance radar scheme named power-centroid radar. This scheme is discussed in [8]-[12] 
with its development starting with funding from DARPA’s 2001-2005 KASSPER program. In Section 6 linger-
thermo theory, including lingerdynamics and thermodynamics is applied to the derivation of biological lifespan 
bounds. Finally in Section 7 a summary is given of the UCDP and conclusions are drawn. 
 

2. LINEAR QUADRATIC GAUSSIAN  CONTROL 

 
The UCDP has roots in Kalman’s linear quadratic Gaussian (LQG) control [3]. The principle was first identified in 
1978 as part of graduate studies in three fields; namely, optimum control [2], cybernetics [1] (where a 
mathematical model for the CNS mechanisms that control movements was being sought [7]), and digital 
communications [24]. The global structure of the LQG control scheme is described in Fig. 1(a) with the controlled 
system receiving a control action uk from the controller whose magnitude is continuous, and could be applied in 
either a discrete or continuous time fashion. The output of the system yk is a noisy state where the state xk may 
describe, for instance, the position of an aircraft or some runner. LQG control yields a strictly optimum controller 
that consists of a Kalman filter followed by a linear quadratic (LQ) controller that receives the estimated state of 
the system from the Kalman filter and then uses it to generate a control action. In the Kalman filter case a vector 
gain Kk, where k is the present stage, must be designed using Ricatti equations that are solved forwards in time, 
while in the case of the LQ controller a vector gain Lk must also be designed using Ricatti equations but that are 
now solved backwards in time. The similar structures of the backwards/forwards solved Ricatti equations can be 
said to express a mathematical duality.  
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Fig. 1  (a) Stochastic LQG Control System. (b) Separated Uncertainty/Certainty Design. 
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In Fig. 1(a) the discrete time system case is shown where Ak, Bk, and Ck are deterministic system matrices 
whose dimensions depend on the state xk, control uk and output yk vector dimensions, and where vk and wk are 
Gaussian white-noise processes with covariances Vk and Wk, respectively. Moreover, a stochastic performance 
criterion is minimized that is a quadratic function of both the future state and control, see Fig. 1(a) where Qi and Ri 
are weighting matrices on the state and control to go, respectively.   

The LQG controller design is further characterized by an enabling physical uncertainty/certainty separation 
property that can be described with the aid of Fig. 1(b). First, it is noted that the Kalman filter can be designed 
independently of the LQ controller. More specifically this is done by using a stochastic model for the past system 
behavior, with its future behavior not impacting the result. The performance criterion minimized in this case is the 

expected quadratic state error ])x̂)(xx̂-x[( T

kkkkE −  where 
kx̂  is the state estimate found through the forwards 

solution of the Ricatti equations for the gain Kk of the state estimator      ( )kkkkkkkkk CKBA x̂y  ux̂ˆ
1 −++=+x  

shown in Fig. 1(b). Second, it is noted that the LQ controller can be designed independently of the Kalman filter, 
but now assuming a deterministic future system behavior while ignoring its past behavior. The performance 
criterion that is now minimized is the deterministic cost to go ∑
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control uk found through the backwards solution of the Ricatti equations also shown in Fig. 1(b). This past-
uncertainty/future-certainty separation in the controller design can be said to express a physical 

uncertainty/certainty duality, highlighted in Fig. 1(b), that when used in the design process yields an optimum 
solution only under the LQG assumptions [3]—Fig. 1(b) also highlights the mathematical duality identified earlier 
in the forwards/backwards Ricatti equations gain solutions. When used in controller design this most convenient 
uncertainty/certainty design separation is however subject to the caveat that from a strictly mathematical 
perspective it only yields an optimum result for the LQG case. As a result, in real-world applications where the 
systems are always nonlinear and the interference and noise are not Gaussian one truly finds a mathematically 

intractable problem for the controller design. This type of intractability is not unlike the mathematically intractable 
problems encountered by physicists [16] while dealing with either dark-energy (like in a black hole) or light-
energy (like in a vacuum) problems. 

 

3. STOCHASTIC MATCHED PROCESSORS CONTROL 

 
In the 1970s when microprocessors first became available for system control [25] and there was also great interest 
in the derivation of mathematical models for the CNS [26], the identified separations or equivalently the ‘physical 
as well as mathematical’ dualities in LQG control were first applied to quantized control [2].  

The input to the discrete time controlled system was now a quantized control action, e.g., the on-off values of a 
relay controller, while the system output was a noisy quantized state. The controller then consisted of a matched 
filters subsystem for quantized state detections followed by a matched processors subsystem for quantized control 
decisions. While each matched filter was, for instance, matched to a past sequence of high and low state values, a 
matched processor was, for instance, matched to a unique sequence of on and off (or zero) values over a finite 
number of future control decisions or steps.  
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Fig. 2 (a) Stochastic Matched Processors Control System. (b) Separated Uncertainty/Certainty Design. 
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In Fig. 2(a) a structural description is given of the quantized control system structure that is noted to match that 

of Fig. 1(a) for LQG control, except that the controlled system input and state are now assumed quantized with the 
generally nonlinear functions fk and gk operating on xk, uk, vk and wk to give rise to the next state xk+1 and output yk. 

To derive the controller for the stochastic quantized control system of Fig. 2(a) a matched filters subsystem for 
state detections is first derived as part of the past-uncertainty design method as is depicted in Fig. 2(b). The 

performance criterion used to detect the present state xk is its conditional probability )Y,/Xx( 010 ,k,kkkp −
 

appropriately derived where X0,k and Y0,k are k+1 past and present states and measurements, respectively. 
Secondly, a matched processors subsystem for control decisions is designed as part of the future-certainty design 
method (as is also shown in Fig. 2(b)). These matched processors evaluate an appropriately specified performance 

criterion )],u,.,u[U],x,.,x[X( 11,, kh NkNkNkNkkN −−− ==  where each is matched to a feasible future control sequence Uk,N-1. 

Moreover, this matched processors subsystem has a backwards (from future to present) parallel structure that may 
be viewed as the structural mathematical dual of the forwards (from past to present) parallel structure that is part of 
the matched filters subsystem. The practical results derived with this parallel processing method have been found 
to be quite reasonable [27] since only a few matched processor evaluations need to be considered at each control 
stage regardless of the number of stages to go (illustrated in Fig. 2(b) with just two matched processors). 
Moreover, the serial/parallel structures encountered in the controller implementations are sensibly suited for CNS 
modeling. Another remarkable result of matched processors was that unlike Bellman’s dynamic programming [28], 
also used in quantized control, it did not suffer of what Bellman called “the curse of dimensionality” of his 
dynamic programming when referring to the exponential increase in the computational burden as the process state 
dimension increased in value. 

The main highlight of both the stochastic LQG control scheme and the stochastic matched processors scheme 
just described is that in their designs a common physical uncertainty/certainty duality anchors structural 
mathematical dualities. This property was then identified as our UCDP which as noted earlier may be stated as, 
“synergistic physical and mathematical dualities naturally arise in efficient system designs.”  

When the UCDP is viewed globally one then realizes that it can be applied in three major areas of research. 
They are: 1) In finding the uncertainty space-penalty dual for the laws of motion in physics, with this dual called 
the laws of retention; 2) In finding the certainty time-penalty dual for information-theory (applied not only to 
source but also to retainer information systems), with this dual called latency-theory  (applied not only to processor 
but also to mover latency systems); and 3) In finding the certainty time-penalty dual for thermodynamics (applied 
not only to source but also to retainer thermo systems), with this dual named lingerdynamics (applied not only to 
processor but also to mover linger systems). We next review each of these three applications.  

 

4. LAWS OF RETENTION IN PHYSICS 

 

The laws of retention in physics first derived in 2008 in [5] while guided by our duality principle are now reviewed 
making use of Fig. 3 and Table 1.  
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Fig. 3 (a) Motion’s space-time certainty. (b) Retention’s space-time uncertainty as motion’s dual. 
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In Fig. 3(a) one first notices how in the study of future motions a certainty model for space-time is assumed 

where our objective is the space-dislocation of a mass while subjected to a time-penalty D. Moreover it is also seen 
how the efficiency of this motion is measured by the ratio of the achieved space-dislocation ‘s’  to the time-penalty 
D, which is called the speed v of the system. One also finds that the medium where the highest speed (or motion 
efficiency) is achieved is in a vacuum and is the speed of light c. Newton in 1687 started the study of the laws of 
motion [17].   

In Fig. 3(b) the retention uncertainty dual of our motion problem has been added to the motion representation 
of Fig. 3(a). One then notices the following retention/motion dualities that are moreover expressed using our 
cybernetics duality language.  

First one notes that in the study of past retentions an uncertainty model for space-time is assumed where our 
objective is the time-dislocation of mater (the retention dual of mass) while subjected to a volume space-penalty V. 
For instance, the retained mater could be some acquired data (the mater of some event) that we may wish to store 
50 years (the desired duration of its retention) while saving it in a storage device (a retainer occupying some 
volume space) for 50 years. Moreover it is also seen how the efficiency of this retention is measured by the ratio of 

the achieved time-dislocation τ to the space for storage V, which we have named the pace Π of the system [5]. For 
instance, in a biological application this pace could indicate the number of years that ‘healthy’ DNA information 
remains in our bodies (denoting the retention volume) to sustain life as adults, e.g., the pace for an adult individual 
with a constant volume of 0.07 m3 would be of 1,143 years/m3 if his adult lifespan is of 80 years. Moreover, one 
finds that the medium where the highest pace (or retention efficiency) can be achieved is in a black hole leading to 
the ‘pace of dark in a black hole’ (the retention dual of the speed of light in a vacuum) with the assigned symbol  

χ and whose value is derived in Appendix A.  
The revelation in 2006 of this cybernetics retention/motion duality let to [5] where numerous cases of this 

duality were first published. Among these cybernetic duality results one finds the following three: 1) The listing of 
the retention duals for the main constants, variables and equations of the laws of motion in physics; 2) The finding 

of an expression for the pace of dark χ as a function of the three fundamental constants in physics which are the 
speed of light in a vacuum c, the gravitational constant G, and the Planck constant h; and 3) the derivation of the 

retention dual of the gravitational constant which has been called gravidness with symbol Φ. 
 

Table 1. Cybernetics Duality Laws in Physics 
 

E = Mc2: Mass-energy equation

Light Viscidity of Motion: ϖM = 

Light Mater of Motion: OM = 

G  = Gravitational constant in N.m2/kg2 units

c = Speed of light in vacuum in m/sec units

p  = Mv: Momentum in N.sec units

Laws of MotionLaws of Retention

v = Speed in m/sec units

a = Acceleration in m/sec2 units

f  = Force in N units

M  = Mass of motion in kg or N.sec2/m units

Φch /3/4320 3 67πχπ=

Gc h/480
2=χ Gc h/480
2=χ

The Planck and gravidness constants inverse equation :   

The pace of dark equation :

The four cybernetics duality constants Φ, G, χand c in physics equation: (Φ/G)3  =  4π χ10/81c12

fm   =  GmM/r2: Gravitational force of  M on ‘m’γ
o   =  Φ oO/τ 4/3 : Gravidness Press of  O on ‘o’

r  =  Space-dislocation in m unitsτ =  Time-dislocation in sec units

ϖ = O χ 2: Mater-viscidity equation

Dark Energy of Retention:ΕR = υ = Οχ

Dark Mass of Retention: M
R

Φ  = Gravidness constant in Pa.sec4/3/kgR
2 units

χ = Pace of dark in black hole in sec/m3 units

υ =  O Π: Endurance in Pa.m3 or N.m units

Π = Pace in sec/m3 units

α = Escalation in sec/m6 units

γ = Press in Pa units

O  = Mater of retention in kgR or N.m6/sec units

ϖ = Viscidity in  Pa.sec units  E = Energy in  J or  N.m units  

χ Μ c2 

= υ / c2 ϖM /χ 2 
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In Table I an illustration is given of the laws of retention in physics that were derived as retention duals for key 

constants, variables and equations of Newton’s Principia. These are: 1) Pace Π in sec/m3 units, the retention dual 

of speed v in m/sec units; 2) Escalation α in sec/m6 units, the retention dual of acceleration a in m/sec2 units; 3) 

Press γ in Pa units, the retention dual of force f in N units; 4) Retention-mater O in kgR or Pa.m6/sec units, the 

retention dual of mass M in kg or N.sec2/m units; 5) Endurance υ=ΟΠ in ‘dark energy’ Pa.m3 or N.m units, the 

retention dual of momentum p=Mv in N.sec units; 6) Pace of dark in a black hole χ, the retention dual of the speed 

of light in a vacuum c; 7) Gravidness constant Φ in Pa.s4/3/kgR
2 units, the retention dual of the gravitational 

constant G in N.m2/kg2 units; 8) The time-dislocation τ in sec units, the retention dual of the space-dislocation r in 

meter or m units; 9) The viscidity (ϖ) in Pa.sec units, the retention dual of the energy (E) in J or N.m units; 10) 

The mater-viscidity (ϖ) equation ϖ=Oχ2, the retention dual of the mass-energy (E) equation E=Mc2; 11) The 

gravidness press γo=ΦoO/τ4/3 of the point-mater O acting on the point-mater ‘o’, the retention dual of the 
gravitational force fm=GmM/r2 of the point-mass M acting on the point-mass ‘m’; 12) The equation 

(Φ/G)3=4πχ10/81c12 relates all the four cybernetics duality constants Φ, G, χ and c in physics (derived in Appendix 

B); 13) The pace of dark in a black hole χ is given by the equation Gc h/480 2=χ  (derived in Appendix A); and 14) 

The equation Φch /3/4 360 3 67πχπ=  provides an inverse relationship between the Planck constant and the 

gravidness constant.  
    Four and last, the following two ‘dark-energy’ and ‘dark-mass or dark-matter’ results are highlighted from 

Table 1. They are; 1) The dark-energy of retention ER=Οχ=Press by V is the retention dual of the light-viscidity of 

motion ϖM=χMc2=Pressure by D. While the dark-energy ER enables the space-penalty V paid for the time-

dislocation of mater, the light-viscidity ϖM enables the time-penalty D paid for the space-dislocation of mass. 2) 

The dark-mass or matter in retention MR=Oχ/c2 is the retention dual of the light mater in motion OM=Mc2/χ. While 
dark-mass MR is the mass of the space-penalty paid for the time-dislocation of mater, light-mater OM is the mater 
of the time-penalty paid for the space-dislocation of mass. Moreover, since the units of light-viscidity are those of 
viscosity our duality perspective suggests the following. Firstly, that the light-viscidity of motion acts in a vacuum 

to speed down the motion of mass-energy, since it induces a time-penalty, leading in turn to c for the maximum 
speed of light in a vacuum. Secondly, that the dark-energy of retention acts in a black hole to pace down the 

retention of mater-viscidity, since it induces a space-penalty, leading in turn to χ for the maximum pace of dark 
(the retention dual of light) in a black hole. Many more cybernetics dualities in physics are found in [5] and later 
publications like [29], [19] and [22]. In particular, in the last page of [19] it was pointed out that dark-energy and 
dark-matter could be investigated as a cybernetics black-hole/vacuum duality in physics [5], along the lines of how 
the problem is being approached nowadays by physicists [16]. 
 

5. LATENCY-INFORMATION THEORY 

 
Latency-theory is the time-penalty dual of information-theory. Information-theory designs through its source 

coding [18] a source-coder that reduces the space-penalty paid for the storage of an information-source output.  
For example, for the original Lena image of Fig. 4(b) the space-penalty paid is 8 info-bits/pixel.  
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Fig. 4  (a) Information-Source’s Entropy H.  (b) Source-coder’s Lossless and Lossy Illustrations. 
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On the other hand, latency-theory designs through its processor coding a processor-coder that reduces the 
time-penalty paid for the processing of a latency-processor input. For example, for the full adder of Fig. 5(b) the 
time-penalty paid would be of six gate or bor levels. 

In information-theory the Shannon information-source entropy with symbol H is an expectation metric that 
conveys the minimum amount of space-penalty in ‘mathematical’ info-bit units to pay for the representation of the 
source outcomes. The information-source entropy H is defined as 

][])[/1(log 
1 2 iii

PPH µµ∑
Ω

=
=                                                               (1) 

which is also displayed in Fig. 4(a) for ease of comparison with other metrics, where µi denotes the i-th state or 

outcome of the information-source, Ω is the total number of outcomes, P[µi] is the probability of µi and 

log2(1/P[µi]) represents the least number of info-bits that may be used to represent the i-th state µi. In Fig. 4(b) it is 
noted that when the original Lena image with 8 info-bits/pixel is the output of the information-source, an 
evaluation of H reveals it to be 7.44 info-bits/pixel.  

On the other hand, in latency-theory the latency-processor entropy with symbol K is a ‘minimax’ metric that 
conveys the minimum amount of time-penalty in ‘mathematical’ lat-bor units to pay for the representation of the 
processor delay. The latency-processor ectropy K is defined as 

},...,1:max{log ][ Λ== ihK ihC i
                                                            (2)  

which is also displayed in Fig. 5(a) where hi denotes the number of info-bits in the i-th info-bits vector hi whose 
processing by the latency-processor gives rise to the i-th element yi of its vector output y, C[hi] (the time-penalty 

dual of the probability P[µi]) is the constraint in the number of inputs for the gates processing hi, and logC[hi]hi (the 

time-penalty dual of log2(1/P[µi])) is the minimum number of lat-bors that via wired logic [30] implements the sum 
of minterms Boolean expression relating yi to the info-bits in hi. In Fig. 5(b) it is  noted that when a full adder 
(where ai, bi and cin are the three added info-bits and si and cout are the outputs) with 6 lat-bors/sum is the latency-
processor, an evaluation of K reveals it to be K=2 lat-bors/y where the gates are limited to two inputs each, i.e., 
C=2 for both the outputs y1=s (or sum) and y2=cout (or carry out) of the latency-processor.  

In information-theory source-coding uses H to guide the design of a source-coder that saves mathematical 
info-bit space in either a lossless or lossy fashion. For the lossy source-coder case a source-encoder is first 
designed that determines for the information-source output an energy decomposition, and then only sends to the 
source-decoder the info-bits linked to the most energetic elements in the decomposition. In Fig. 4(b) the well 
known lossy Lena image is shown that was encoded with a MMSE-PT source-coder with subbands [31] and yields 
a source-encoder rate RSC of 0.136 info-bits/pixel. It is noted here that the performance of the decoder output is 
evaluated in terms of the ‘multi-pixels’ subjective visual result derived from the image output, where the decoder 
output is not  discarded afterwards. 
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Fig. 5 (a) Latency-Processor’s Ectropy K. (b) Processor-coder’s Lossless and Lossy Illustrations. 
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In latency-theory processor-coding (the time-penalty dual of source-coding) uses K to guide the design of a 
processor-coder that saves mathematical lat-bor time in either a lossless or lossy fashion. For the lossy processor-
coder case a processor-encoder is first designed that determines for each latency-processor output element the 
implementation with the least number of processing levels, and then only relays to the processor-decoder the most 
essential elements for their implementation. In Fig. 5(b) a lossy full adder coder is shown that sets s to zero thus 
yielding a processor-coder rate RPC of only 1 lat-bor. This coder improves by 100 % the processor-coder rate but 
with the loss of the least significant bit of the two bits full adder output. It is noted here that the performance of the 
decoder output is evaluated in terms of a practical ‘scalar-numerical’ result derived from the full adder output, 
where the decoder output is discarded afterwards. In [8], in particular, processor-coding has been used to derive a 
signal-processor, called power-centroid radar, that obviates the use of prior-knowledge, such as synthetic aperture 
radar (SAR) imagery of the earth while still yielding high-performance radar, a highly desirable result. 

In information-theory H plays another significant role and it is in the mathematical theory of communication 
(MTC) [18]. As expected, this theory also has a time-penalty dual in latency-theory which has been named the 
mathematical theory of observation (MTO) [32]. We now describe in general terms this case via our cybernetics 
duality language.  

While in MTC one seeks a channel and source integrated (CSI) coder that achieves the channel-capacity C of 
an uncertainty communication channel, in MTO one seeks a sensor and processor integrated (SPI) coder that 
achieves the sensor-consciousness F for a certainty sensor.  

The MTC’s channel capacity C is given by the ratio: 

C=(H-∆H)/H                                                                                   (3) 
and describes the most efficient time-communication of the source’s H info-bits possible by an uncertainty 

communication channel with ∆H denoting the quantum of operation (QoO) portion of H that cannot be time-
communicated because it is an unavoidable penalty due to channel use (e.g., the unavoidable penalty of 
transmitting error detection/correction parity bits by a CSI coder due to the presence of a noisy channel). 

On the other hand, the MTO’s sensor consciousness F is:  

F=(K-∆K)/K                                                                                  (4) 
and describes the most efficient space-observation of the processor’s K lat-bors possible by a certainty observation 

sensor with ∆K denoting the QoO portion of K that cannot be space-observed because it is an unavoidable penalty 
due to the use of a sensor (e.g., the unavoidable penalty of losing one bor of 2 bors needed for processing due to a 
one-bor limiting sensor, for our full adder a SPI-coder that would satisfy this constraint is the lossy source-coder of 
Fig. 5(b)).  

     Physical duals [29] for the mathematical metrics H and K have been identified and are now reviewed. First 
in Fig. 6(b) an information-retainer is shown, illustrated with a cylindrical thermos whose dimensions are the 
average dimensions of a given set of cylindrical thermos. The information-retainer entropy N is defined as 
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which is also displayed in Fig. 6(a), and is an expectation expression where µi denotes the i-th state of the 
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Fig. 6 (a) Information-Retainer’s Entropy N. (b) Retainer-coder’s Lossless and Lossy Illustrations. 
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information-retainer, P[µi] is the probability of µi and 4πri
2 represents the least surface area (corresponding to a 

spherical volume) in info-m2 units that may be used to represent the surface of the volume where the i-th state µi is 
assumed to reside. In this representation ri denotes the radius of the i-th sphere and r the radius of the average 
sphere of the set of thermos. In Fig. 6(b) it is noted that an average retention surface value is derived for the set of 
thermos of 0.02262 info-m2, and N is 0.01942 info-m2 for this case. This new type of entropy in info-m2 units gives 
rise to a retainer-enhanced information-theory that through retention-coding has N guiding the design of a 
retainer-coder. This coder reduces the physical space-penalty for the information-retainer surface area in either a 
lossless or a lossy fashion. For a lossy retainer-coder case a coder is designed that has a spherical volume with a 
surface area that is less than that of the lossless retainer-coder. Both the lossy and lossless cases are shown in Fig. 
6(b) where the surface area of the lossy coder is 0.01131 info-m2; a 42% improvement over the lossless case but 
now with less available volume for retention. 

  Second in Fig. 7(b) a latency-mover block diagram is shown, illustrated with the circular motions of a group 
of runners. The latency-mover ectropy A is defined as 

vrvrvrA /}/,..,/max{ 11 πππ == ΛΛ                                                        (6) 

which is also displayed in Fig. 7(a), and is a minimax expression where vi is the i-th runner’s average speed 

constraint, ri is the radius of circular motion and πri/vi represents the least delay in motion from one side to the 

other side of the circle in lat-hr units. In the expression A=πr/v, r is the largest possible radius and v is the lowest 
possible speed giving rise to A. In Fig. 7(b) it is further noticed that the minimax delay of 3 hrs is derived for a set 
of three runners in a circular medium with a 100 km diameter, and a latency-mover ectropy A of ¾ lat-hrs linked to 
higher average speeds.  

This new type of ectropy in lat-sec units gives rise a mover-enhanced latency-theory that through motion-

coding has A guiding the design of a mover-coder. This coder is used to save physical lat-sec time in either a 
lossless or a lossy fashion. For a lossy mover-coder case a mover-coder is designed where some of the runners do 
not reach their destination. Both the lossy and lossless cases are shown in Fig. 7(b) where the duration of the lossy 
coder is 1/2 lat-hr, an improvement by a factor of 3/2 over the lossless case, however with less number of runners 
in motion. 

Physical duals [29] for the mathematical theories of communication and observation are next reviewed. First 
for the retainer-entropy N the physical theory of observation (PTO) applies that seeks a sensor and retainer 

integrated (SRI) coder that achieves the sensor-scope ‘I’ of an uncertainty sensor (e.g., a random tea drinker 
mouth). The sensor scope ‘I’ is given by the ratio  

I=(N-∆N)/N                                                                               (7) 
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Fig. 7  (a) Latency-Mover’s Ectropy A. (b) Mover-coder’s Lossless and Lossy Illustrations. 
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and describes the most efficient time-observation of the retainer’s N square meters of surface area by an 

uncertainty observation sensor with ∆N denoting the QoO portion of N that is lost because it is an unavoidable 
penalty suffered by the use of the sensor (e.g., a non-spherical cup, a type of SRI coder, may be necessary for tea 
drinking).    

Second for the mover-ectropy A the physical theory of communication (PTC) applies that seeks a channel and 

mover integrated (CMI) coder that achieves the channel-stay T in a certainty channel (e.g., a peddle surface for 
running). The channel stay T is given by the ratio  

T=(A-∆A)/A                                                                                (8)  
and describes the most efficient space-communication of the mover’s A seconds of delay via a certainty 

communication channel with ∆A denoting the QoO portion of A that is lost because it is an unavoidable penalty 
suffered due to channel (e.g., special shoes, a type of CMI coder, for easy running). 

 
6.    LINGER-THERMO THEORY AND ITS BIOLOGICAL LIFESPAN BOUNDS 

 

6.1 Linger-thermo theory 

    As noted in our introductory section lingerdynamics is the time-penalty dual of thermodynamics. In particular 
the entropies of thermo systems and the ectropies of linger systems were noted to be related via the following two 
expressions: 

2ˆˆ KH =                                                                            (9) 
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where (9) relates the mathematical units entropy Ĥ  of a thermo-source in thermo-bit units and the ectropy of a 

linger-processor K̂  in linger-bor units, and (10) relates the physical units entropy 
24ˆ rN π= of a thermo-retainer 

in SI m2 units and the ectropy vrA /ˆ π=  of a linger-mover in SI sec units, with r being the radius of a spherical 

medium and v the perpetual rotational speed of a particle on the surface of the sphere whose mass is modeled as a 

point-mass M at its center and thus satisfying the gravitational relationship 
22 /2/ evGMvGMr ==  (ve is the 

escape speed of a particle from the medium). In addition in (10) the former gravitational relationship and retention 

pace relationship Π=τ/V (τ is defined as the lifespan of thermal-bits of interest, called lifebits, in our spherical 

medium of volume V=4πr3/3) were used. In particular, the physical units expression (10) can be expressed in 

quantum of operation (QoO or ∆) form according to: 
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where the following assumptions were made: 1) ∆τ is a QoO lifespan of the lifebits of interest, e.g., one day or 

equivalently 1/356 years; 2) ∆M in kg units, e.g., 0.4 kg, is a QoO mass contributed by the surroundings of the 

medium during ∆τ  in the form of heat energy δQ=Θµ∆M in joule units where Θ in calories per kg units and µ in 

joules per calorie units are appropriate conversion factors, e.g., Θ=5,000 kcal/kg and µ=4.18 joules/cal when 
considering the nutritional consumption rate of an organism, moreover, to maintain M constant in value during 

∆τ it is assumed here that a similar amount of quantum of radiation (QoR or ◊ ) energy ◊ Q=δQ returned to the 

surrounding by the medium in the form of black body radiation; 3) the pace Π and perpetual rotational speed v are 

assumed to remain constant during ∆τ ; and 4) the sphere’s radius r of the medium is assumed to be much larger 

than its QoO radius ∆r during ∆τ. Moreover, taking the ratio of (10) to (11) the following QoO ratio of physical 
quantities results: 
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    Using (9) and (12) and also making use of the relationship that exists between the thermo-source entropy Ĥ , the 

Boltzmann entropy S, and the possible number of microstates Ω of the medium given according to: 
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Ω== 2log2ln/ˆ kSH                                                                   (13) 

the universal linger-thermo equation (ULTE) follows according to: 
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where fMed is a medium dependent function that relates the mathematical entropies and ectropies of thermal-sources 
and linger-processors to the physical entropies and ectropies of thermal-retainers and linger-movers. 
    As an illustration a partial version of a spherical, uncharged, and non-rotating black hole (BH) ULTE expression 
is given according to: 
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363 /10 x 1203.6 m s=χ                                                                   (16) 
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where c is the speed of light in a vacuum, χ is the pace of dark in a black hole, ∆τBH is the QoO lifespan in a black 

hole, ∆MBH is the constant QoO mass in a black hole during ∆τBH, 
211 cME LBLB

BHBH

=
∆

=
∆ ◊=◊ ττ   is the QoR mass-energy 

of a single life-bit equation when the lifebit is emitted from a black hole of mass M, rBH is the black hole radius, 
and SBH is the Bekenstein-Hawking entropy given by [33]: 

23 4)4/( BHBH rGkcS πh= .                                                             (20) 

 
6.2 Linger-thermo theory and its biological lifespan bounds 

    There are macro and micro expressions that may be used to find the adult lifespan τ of an organism. The macro 
expression depends on the nutritional consumption rate (NCR) of an organism and can be determined from the 
QoO ratio of physical quantities given by (12) where one derives the macro NCR adult lifespan upper bound 

equation of: 
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where M is the body size of an individual and ∆Μ=δQ/Θµ  is his NCR, with δQ denoting the input heat energy in 

joules and Φ=5,000 kcal/kg and µ=4.18 J/cal are unit conversion factors. For instance, (21) yields an adult lifespan 
of 84 years (or a total lifespan of 102 years when 18 years of childhood are added) when the body size of the 
individual is of 70 kg and his NCR is of 0.4 kg/day which corresponds to 2,000 kcal/day. This result is a sensible 
upper bound prediction for a healthy individual since, for instance, the life expectancy of the US population is of 
79 years, including all types of deaths. 
    On the other hand, when the ULTE of (14) is solved for a flexible-phase medium, like liquid water at a 
temperature of 310 K, micro expressions can be found for the adult lifespan of an individual (whose medium is at a 
temperature of 310 K and more than 98 % of his molecules are of liquid water) in terms of his specific heat-
capacity in J/kg.K units or equivalently from his molecule’s dimensionless degrees of freedom (DoF) heat-
capacity. The derivation of a micro approach to adult lifespan investigations is highly desirable due to both its 
theoretical as well as practical implications since some, like specific heat capacity, may be more readily available.  
    The ULTE for a flexible-phase (FP) medium was first advanced in [14] and given by the expressions: 
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where: 1) S is the entropy of our linger-thermo flexible-phase medium which is similar in form to that of an idea 

gas (IG) which is given by the expression ( )IG

c

IGIG JqekJS V /ln 1+=  (with JIG=U/cVkT  being the number of gas 

molecules given by the ratio of the IG’s internal energy U,  denoting the kinetic plus potential energy of non-
interacting molecules, to the product of the thermal energy kT and the constant volume heat capacity cV of the gas, 

and q=qeqtqRqυ being the molecular partition function with qe, qt, qR, qυ denoting the electronic, translational, 
rotational and vibrational partition factors of a molecule given by (28)-(32) where m is the molecular mass, g0 is 

the degeneracy of the ground energy state, ‘I’ is the average moment of inertia of a molecule, σ is its symmetry 

number and υ is the average vibrational frequency); 2) PV=kTJ is the flexible-phase law, with P and V being the 
pressure and volume of the linger-thermo flexible-phase medium, which is similar in form to that of an ideal gas 

which is given by PIGV=kTJIG with PIG and V being the pressure and volume of the ideal gas);  3) The cV(η) is the 
constant volume heat-capacity of the medium that is equal to the DoF of the molecules of the medium over two, 

with cV,Max being the maximum value that this heat-capacity may have; 4) η  is a coupling factor conveying the 

generally non-equilibrium thermal state of the medium whose value is one when cV(η)=cV,Max; 5) eT =mT c2 denotes 
the mass-energy of a thermote particle that is defined for a flexible-phase medium; 6) J is the number of thermotes 

in the medium whose value changes as the temperature and heat-capacity of the medium changes; 7) α is a 
normalizing constant for our linger-thermo flexible-phase medium; and 8) E is the internal energy of our linger-
thermo flexible-phase medium which is in fact the total energy of the medium and thus includes all molecular 
interactions. 
    Making use of expressions (22)-(33) the following QoO FP-ULTE expressions follow when the Classius input 

heat δQ=TdS is added to the flexible-phase medium: 
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where: 1) dS is the QoO Clausius entropy added to the medium; 2) dJ is the QoO thermote number added to the 

medium; 3) δQ is the heat energy added to the medium 4) δE is the part of δQ contributed to the internal-energy of 

the medium; 5) Hδ is the enthalpy energy part of δQ that encompasses both δE and the ‘dark energy’ d(PV)=kTdJ 

necessary to provide space for δE; 6) δG is the Gibbs energy part of δQ that is available to the medium to do non-

mechanical work; and 7) F(αη) is the QoO FP-ULTE factor. 
    From our QoO FP-ULTE (34) with E=Mc2 and V=M/1000 (assuming the mass density of liquid water for an 
organism) two micro adult lifespan expressions surface as alternatives to (21). They are:  
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where: 1) equation (42) is a micro DoF adult lifespan upper bound equation since it depends on the value of the 

heat-capacity cV(η); and 2) equation (43) is a mixed macro-micro adult lifespan upper bound equation since it 

depends on the ratio of the macro NCR energy δQ=Θµ∆M= Q◊  over the micro volume energy (or dark energy) 

d(PV)=kTdJ =
LBE τ∆◊  with 

LBE τ∆◊  denoting the ‘dark energy’ lifebits portion of the Clausius heat energy Q◊  

transmitted to the surroundings in the form of black body radiation.  
    In addition, the following expression follows: 
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which denotes the number of lifebits emitted to the surroundings during ∆τ in terms of 1=
∆◊ LB

BH
E τ  bit energy units, 

where 1=
∆◊ LB

BH
E τ  (19) is the dark energy used to emit a single lifebit by a black hole of similar mass as that of our 

flexible-phase medium.  
    In order to use our two new adult lifespan equations (42) and (43) in our studies, all that remains for us to do is 

to find sensible expressions from which values for α and cV,Max can be derived. Three such expressions have been 
derived and are given by: 
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where: 1) equation (45) follows from (42) with the average adult lifespan τAvg, say 62 yrs, and average heat-

capacity cV,Avg, say 2.49 (or 3,469 J/kg.K), of a population are used for τ and cV(η), respectively; 2) equation (46) 

surfaces from setting the Gibbs energy δG (41) equal to zero which yields the condition 
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6.3 Study of human adult lifespan bounds 

    In Table 2 a summary is given of the biophysical parameter values assumed during the adult lifespan of an 
individual whose internal temperature is assumed to be 310 K and whose medium is modeled as liquid water where 
the mass of a water molecule is 3 x 10-26 kg. Moreover, from Table 2 it is noted that for some population it is 
assumed that its average constant volume heat-capacity is 2.49 or 3.469 J/kg.K and average adult lifespan is 62 
years (similar to that of the US).  
    Then in Tables 3, 4 and 5 simulation results are given for three different body sizes (50 kg, 70 kg and 100 kg) 
and three adult lifespans (102 years, 62 years and 42 years). The following results are then highlighted from these 
three tables: 

1) From the top and leftmost cells of these three tables it is noted that the values of α do not vary by 
more than 0.06 % from 0.8465 and the values of cV,Max by more than 0.04 % from 2.578 (or 3,591 
J/kgK) as the body size is varied from 50 to 100 kg. 

2) The highest adult lifespan of 102 years is achieved with the least metabolic stress as noted from the 

tabulated ∆M/δQ values. 

3) The most efficient use of the inputted heat energy δQ occurs when the adult lifespan τ is the largest, 

as measured by the Gibbs energy which is the largest percent of δQ, i.e., 64 %, when τ = 102 years.  

4) The best lifespan of 102 years is achieved when: a) the ratio of body size to NCR M/∆M is the largest, 

i.e. of around 193; b) the heat capacity cV(η) is the smallest, i.e., around 2.4822 (3,458 J/kgK); and c) 

the ratio of ∆M to δJ or dm is the largest, i.e., around 1.9976 x 10-27 kg. This value of dm is noted to 
be greater than the mass of a hydrogen ion or proton which is 1.6667 x 10-27 kg. In connection with 
this observation it is further noticed that according to Harman’s mitochondrial aging theory, the 
greater the number of high energy electrons producing protons for metabolism’s ATP creation (the 
biological energy molecule) the more the number of free radicals created and thus the shorter lifespan 
due to more mitochondrial DNA mutations. A larger value for dm for the best adult lifespan of 102 
years may thus be interpreted as indicating that a lesser number of protons are being created during 
the metabolism process. 

 

Table 2.  Biophysical Parameter Values for an Individual 

 

T:       Temperature 310 K 

m:      Mass of H2O molecule  3 x 10-26 kg 

∆τ:     QoO Lifespan 1 day = 1/365 yrs 

Θ:       Kilocalories per kilogram conversion factor 5,000 kcal/kg 

µ:       Joules per calorie conversion factor. 4.18 J/cal 

g0:      Degeneracy of ground energy state 1 

I:        Average moment of inertia of H2O molecule 2 x 10-47 kg.m2 

v:        Average vibrational frequency of H2O molecule 1.5 x 109 Hz 

σ:       Symmetry number of H2O molecule 2 

cV,Avg: Average heat-capacity (Dimensionless/Specific) 2.49 / 3,469  J/kg.K 

τavg:    Average adult lifespan 62 yrs 
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Table 3.  Adult Lifespan Bounds for 50 kg Body Size Individual 

 

2.4961 (3,477 J/kg.K)2.49 (3,469 J/kg.K)2.4822 (3,458 J/kg.K)cV(η)

2.2270x10261.7547x10261.2972x1026dJ

616264−δG in % of δQ

1.8133x10-271.8944x10-271.9976x10-27dm in kg

123.824150.421192.976Μ/∆Μ

0.45790.46010.4624F(αη)

0.4038 (2,019)0.3324 (1,662)0.2591 (1,296)∆M/δQ in kg/kcal

4.2063x10384.2166x10384.2298x1038J

τ = 42 yearsτ = 62 yearsτ = 102 yearsα= 0.845976

cV,Max = 2.57862

2.4961 (3,477 J/kg.K)2.49 (3,469 J/kg.K)2.4822 (3,458 J/kg.K)cV(η)

2.2270x10261.7547x10261.2972x1026dJ

616264−δG in % of δQ

1.8133x10-271.8944x10-271.9976x10-27dm in kg

123.824150.421192.976Μ/∆Μ

0.45790.46010.4624F(αη)

0.4038 (2,019)0.3324 (1,662)0.2591 (1,296)∆M/δQ in kg/kcal

4.2063x10384.2166x10384.2298x1038J

τ = 42 yearsτ = 62 yearsτ = 102 yearsα= 0.845976

cV,Max = 2.57862

 

 

Table 4.  Adult Lifespan Bounds for 70 kg Body Size Individual 

 

3.1175x10262.4566x10261.8163x1026dJ

616264−δG in % of δQ

0.45750.45960.4624F(αη)

1.8135x10-271.8942x10-271.9974x10-27dm in kg

2.4961 (3,477 J/kg.K)2.49 (3,469 J/kg.K)2.4822 (3,458 J/kg.K)cV(η)

123.806150.441192.944Μ/∆Μ

0.5654 (2,827)0.4653 (2,327)0.3628 (1,814)∆Μ/δQ in kg/kcal

5.8888x10385.9032x10385.9218x1038J

τ= 42 yearsτ = 62 yearsτ = 102 yearsα = 0.846525, 

cV,Max =  2.57821

3.1175x10262.4566x10261.8163x1026dJ

616264−δG in % of δQ

0.45750.45960.4624F(αη)

1.8135x10-271.8942x10-271.9974x10-27dm in kg

2.4961 (3,477 J/kg.K)2.49 (3,469 J/kg.K)2.4822 (3,458 J/kg.K)cV(η)

123.806150.441192.944Μ/∆Μ

0.5654 (2,827)0.4653 (2,327)0.3628 (1,814)∆Μ/δQ in kg/kcal

5.8888x10385.9032x10385.9218x1038J

τ= 42 yearsτ = 62 yearsτ = 102 yearsα = 0.846525, 

cV,Max =  2.57821

 

 

Table 5.  Adult Lifespan Bounds for 100 kg Body Size Individual  

 

4.4536x10263.5094x10262.5947x1026dJ

616264−δG in % of δQ

0.45710.45930.4624F(αη)

1.8133x10-271.8942x10-271.9972x10-27dm in kg

2.4961 (3,477 J/kg.K)2.49 (3,469 J/kg.K)2.4822 (3,458 J/kg.K)cV(η)

123.808150.444192.940Μ/∆Μ

0.8077 (4,038)0.6647 (3,324)0.5183 (2,591)∆Μ/δQ in kg/kcal

8.4125x10388.4331x10388.4596x1038J

τ = 42 yearsτ = 62 yearsτ = 102 yearsα= 0.847095

cV,Max =  2.577648

4.4536x10263.5094x10262.5947x1026dJ

616264−δG in % of δQ

0.45710.45930.4624F(αη)

1.8133x10-271.8942x10-271.9972x10-27dm in kg

2.4961 (3,477 J/kg.K)2.49 (3,469 J/kg.K)2.4822 (3,458 J/kg.K)cV(η)

123.808150.444192.940Μ/∆Μ

0.8077 (4,038)0.6647 (3,324)0.5183 (2,591)∆Μ/δQ in kg/kcal

8.4125x10388.4331x10388.4596x1038J

τ = 42 yearsτ = 62 yearsτ = 102 yearsα= 0.847095

cV,Max =  2.577648
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7. SUMMARY AND CONCLUSIONS 

 
On the heels of major prizes given to physics for the use of mathematical dualities in addressing intractable 
problems in physics such as those in dark energy studies, this paper has reviewed the universal cybernetics duality 
principle or UCDP first identified in control theory in 1978. To help in remembering the UCDP timeline of 
development Fig. 8 is also advanced. The UCDP was not only found to offer mathematical dualities but also 
physical dualities such as those originating in retention/motion problems which led in 2008 to the discovery of the 
laws of retention in physics as the space-penalty dual of the laws of motion in physics. Moreover, it was noted that 
the dualities of the UCDP not only led to addressing intractable problems in physics but also those found in CNS 
modeling, high-performance radar and biological lifespan bounds. While solving these problems novel scientific 
methodologies have been derived such as: 1) matched processor for quantized control started in 1978 and leading 
to sensible parallel/series structures for CNS modeling use; 2) latency-information theory started in 2005 for the 
derivation of high-performance radar designs that obviate the use of prior-knowledge in radar detection, such as 
synthetic aperture radar (SAR) imagery of the earth while still yielding high-performance radar; 3) linger-thermo 

theory started in 2008 for the derivation of sensible biological lifespan bounds where it is predicted, for instance, 
that the lifespan of individuals with a body size of 70 kg and a nutritional consumption rate of 1,814 kcal/day have 
an upper adult lifespan bound of 102 years. Moreover, three possible sensible methods were found to determine 
adult lifespan. One was based on the ratio of body size to nutritional consumption rate. The second was based on 
the specific heat-capacity of the individual. Finally, the third type was based on the ratio of the individual’s daily 
input heat energy to the portion of this energy that produces a volume increase, a kind of dark energy, for a 
constant body size, or decreased mass density as the individual ages. All of the sensible results reviewed in this 
paper compel the view that the UCDP will find broad use in future theoretical and practical studies. 
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Fig. 8 Universal Cybernetics Duality Principle’s Timeline 
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APPENDIX A 

PACE OF DARK IN A BLACK-HOLE   

 
    In this appendix we derive the pace of dark in a black hole (spherical in shape, uncharged, and non-rotating) 

with symbol χ expression [5]: 

363
2

/sec 10 x 1203.6
 

480
m
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c

V
====Π

h
χ

τ
                                                      (48)  

where c is the speed of light in a vacuum, h  is the reduced Planck constant, G is the gravitational constant, τ is the 

retention-time (or time-dislocation) of the spherical volume V=4πr3/3 of radius r of the black hole, and χ=Π  is 

its pace of dark.  
    The derivation starts with the assumption that the black hole satisfies the black body luminance (dE/dt) 
expression [33] according to: 
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where k is the Boltzmann constant, T is temperature, kT is thermal energy, and E=Mc2 is the mass-energy of the 
black-hole. 
    Next the Schwarzschild radius expression for the event horizon of a black hole is noted to be given by: 

42 /2/2 cGEcGMr ==                                                                     (50) 

    Next the Bekenstein-Hawking entropy (S) for our spherical black hole [33] is: 
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where the expression (50) has been used for r. Next the following thermal-energy expression is derived via (51): 
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    Next making use of (52) in (49) one obtains the luminance non-linear differential equation: 
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    Solving (53) one then finds the following result for the energy of the black hole at time t: 
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    Next the retention-time (τ) or time-dislocation of the black hole is found by setting E(t) equal to zero to yield: 
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    Finally using (50) and V=4π r3/3 in (55) the desired result (48) is obtained. 
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APPENDIX B 

GRAVIDNESS CONSTANT DERIVATION 

 

    In this appendix we derive the gravidness constant (Φ) expression given by [5]: 
264/31683 1210 )sec/(/sec  10 x 8619.1 81/4 N.mPa.GcΦ == πχ                                              (56) 

where G is the gravitational constant, c is the speed of light in a vacuum and χ is the pace of dark in a black hole.  
    The derivation starts with the gravitational force (fm) from the point mass MR (viewed as a retention dark matter) 
at the center of a spherical black hole of radius r that acts on another point mass mR (also viewed as a retention 
dark matter) at a radial distance r according to: 

2r

MGm
f RR

m =                                                                             (57) 

    Next a retention press γο (or pressure), see Table I, that acts on the retention mater (o) (a function of mR as will 
be seen) is found by dividing (57) by the surface area of the sphere of radius r to yield: 
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    Next using χ =τ/V in (58) one obtains: 
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    Next simplifying (59) one finds: 
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    Next substituting in the endurance equation υ=OΠ the dark energy of retention ER =MRc2 for the endurance υ 

and the pace of dark χ for the pace Π one finds: 

χυ OcMEOΠ RR  2 ====                                                              (61) 

    Using (61), including χocmR  2 = in (60) one derives:  

( )
3/43/4

3 1210 814

ττ
γ

ΦoOoO Gc/πχ
o ==                                                             (62) 

which implies (56) as desired. 
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