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ABSTRACT

In this first part of the latest latency-information theory (LIT) and applications paper series powerful and fast
‘knowledge-unaided’ power-centroid (F-KUPC) radar is revealed. More specifically, it is found that for real-world
airborne moving target indicator radar subjected to severely taxing environmental conditions F-KUPC radar
approximates the signal to interference plus noise ratio (SINR) radar performance derived with more complex
knowledge-aided power-centroid (KAPC) radar. KAPC radar was discovered earlier as part of DARPA’s 2001-2005
knowledge-aided sensor signal processing expert reasoning (KASSPER) Program and outperforms standard prior-
knowledge radar schemes by several orders of magnitude in both the compression of sourced intelligence-space of prior-
knowledge, in the form of SAR imagery, and the compression of processing intelligence-time of the associated clutter
covariance processor, while also yielding an average SINR radar performance that is approximately 1dB away from the
optimum. In this paper, it is shown that the average SINR performance of significantly simpler F-KUPC radar emulates
that of KAPC radar and, like KAPC radar, outperforms a conventional knowledge-unaided sample covariance matrix
inverse radar algorithm by several dBs. The matlab simulation programs that were used to derive these results will
become available in the author’s Web site.

Index Terms— Latency, Information, Intel-Space Compression, Intel-Time Compression, Knowledge-Aided,
Knowledge-Unaided, Adaptive Radar, Sample Covariance Matrix Inverse

1. INTRODUCTION

A straight forward approach to adaptive airborne moving target indicator (AMTI) radar, see Fig. 1, that does not use
clutter prior-knowledge is the sample covariance matrix inversion (SCMI) scheme that is used to approximate the
optimum Wiener-Hopf weighting vector that arises from maximizing target signal to interference plus noise ratio (SINR)
for an investigated range-bin [1]. The construction of the optimum Wiener-Hopf algorithm requires knowledge of the
interference plus noise covariance of the range-bin. The inverted range-bin interference plus noise covariance is then
multiplied by the steering vector of the assumed target to yield a complex weighting vector of dimension NM where N is
the number of antenna elements and M is the number of its transmitted pulses during a coherent pulse interval (CPI).
This weighting vector is then multiplied by an NM dimensional complex vector that is measured by the radar receiver
and reflects range-bin target, clutter and additional radar interferences and noise. The result of this multiplication is a
complex scalar variable that is used by the AMTI to determine if a target appears on the range-bin or not. Since the
actual interference plus noise covariance is not available in a real-world scenario, the SCMI scheme addresses this issue
by using one or more measurements from range-bins that are adjacent to the range-bin in question to construct a sample
covariance matrix (SCM). Unfortunately, however, in a real-world non-stationary environment this very simple scheme
only crudely approximates the exact range-bin covariance, which often manifests itself in an unsatisfactory SINR radar
performance. To address this problem clutter prior-knowledge in the form of SAR imagery has been advanced, such as
was done by DARPA in its 2001-2005 knowledge-aided sensor signal processing expert reasoning (KASSPER) Program
[2]. The use of these SAR images as prior-knowledge achieves SINR performances that significantly outperform the
SCMI algorithm as well as approximate the optimum results derived from the optimum Wiener-Hopf scheme. On the
down side, unfortunately, the use of SAR imagery prior-knowledge has the drawback of increasing the complexity of the
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Fig. 1 Airborne Moving Target Indicator Radar System

radar system due to the storage space needs for the ‘sourced intelligence-space (or intel-space in short)’, i.e. the SAR
imagery, and the ‘processing intelligence time (or intel-time in short)’ needs for the on-line evaluation of the clutter
covariance from SAR imagery. To address this problem a novel latency-information theory (LIT) methodology has been
advanced [3] whose catalyst was a DARPA KASSPER grant [4] for the compression of SAR imagery via minimum
mean squared error (MMSE) predictive-transform (PT) source coding [5], as well as previous Ph.D. work in control
theory [6]. In particular, the advanced control work formulated a fundamental parallel processing approach to quantized
control using as motivation the discovery in 1978 of an uncertainty-communication/certainty-control duality, unexplored
until then, that exists between an uncertainty ‘digital’ communication problem, i.e. Matched Filters, and a certainty
‘quantized’ control problem, given the name Matched-Processors from a duality perspective. Thus not surprisingly LIT
was formulated by the author as a unified approach to the compression of intel-space—in binary digit or bit units of a
passing of time uncertainty nature—and the compression of intel-time—in binary operator or bor units of a configuration
of space certainty nature. Using this novel LIT conceptualization a knowledge-aided power-centroid (KAPC) radar
algorithm was found that yielded orders of magnitude improvements in both intel-space and intel-time savings over
standard techniques. The fundamental idea behind this low storage and very fast clutter prior-knowledge scheme was the
use of off-line designed predicted clutter covariances (PCCs). The PCCs were developed using a mathematical model of
the physically produced antenna pattern that pointed in the direction of the range-bin power-centroid rather than the
target. The objective of this model was to serve as a compensating antenna pattern (CAP) for the information lost from
SAR images that had been compressed by a factor of 8,172 in a highly lossy manner. The intel-space compression of
these images was also done using a radar blind scheme that made it possible for their use in any type of radar system.
The main purpose of this paper, is to show that in fact the aforementioned powerful and fast KAPC scheme can be
replaced with an even more powerful and fast ‘knowledge-unaided’ power-centroid (F-KUPC) scheme. The main virtue
of F-KUPC radar is that it does not need the use of clutter prior-knowledge in the form of SAR imagery for its
evaluation of the range-bin power-centroid as can be easily verified using matlab simulations of standard radar systems.
This is the case since with a very small number of on-line scannings of each range-bin in question a very simple on-line
algorithm can be used yielding an outstanding on-line estimation of the prerequisite power-centroid.

The rest of the paper is organized as follows. In Section 2 the optimum AMTI radar defining equations are
stated. In Section 3 the sample covariance matrix inverse scheme is summarized. In Section 4 the previously offered
KAPC radar algorithm is summarized. In Section 5 the newly revealed F-KUPC radar scheme is advanced. In Section 6
simulations for real-world AMTI radar under severe environmental disturbances are given and then conclusions are
drawn.
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2. OPTIMUM AIRBORNE MOVING TARGET INDICATOR RADAR
The main defining equations for AMTI radar are summarized next for ease of reference.
2.1 The AMTI Radar System

In Fig. 1 the AMTI radar system is displayed. It consists of: a) V antenna elements that emit M pulses during a
coherent pulse interval (CPI); b) an antenna pattern with its mainbeam pointing to the assumed target location; and c) a
front clutter range-bin mathematically modeled as N¢ clutter patches or cells that radiate to the AMTI receiving antenna
reflections of the M pulses transmitted by the antenna elements as well as the investigated target steering vector times its
power. In our simulations the target power times its steering vector will be normalized to one and the target boresight

angle ¢ with respect to the moving AMTI antenna is of zero degrees, i.e. 0, = 0°. In addition, the assumed No number

of cells is even where the boundary line between cells N¢/2 and (N+2)/2 is investigated to determine if a moving target
appears there. When N has a large value the first and last clutter cells have a clutter boresight angle @, that is slightly

greater than -90° for i=/ and slightly less than 90° for i=N¢, respectively. In Table 1 the N, N and M values used in our
simulations are summarized along with other radar parameters.

2.2 The Analytical Antenna Pattern Model

Regarding the antenna pattern of Fig. 1, it is assumed that the i clutter cell receives from this pattern the i*
antenna gain which is derived from the following analytical expression

sin{N pa % (sin(8.) —sin(6, ))}

2

/N2 (1)

g ©)=K' y
sin{ﬂ 2 (sin(8).) —sin(6, ))}

where i=1,..,N¢, 6, is the target boresight angle, d is the antenna inter-element spacing, A is the operating-wavelength,
and K’ is the front antenna gain constant.

2.3 The AMTI Scalar Complex Output

The scalar complex output of the AMTI system is given by the expression
y=w(z+s) 2
where: a) s is an NM dimensional complex normalized steering vector representing the target; b) z is an NM dimensional
complex interference plus noise complex vector; c) ‘H’ denotes transpose and complex conjugation; and d) w is an NM
dimensional complex weighting vector that is designed with the view of maximizing SINR.

2.4 The Signal to Interference Plus Noise Ratio (SINR)
The SINR expression that is maximized is given by
SINR=w"'ss"'w/ w"'Cw. 3)
where w'ss"'w is the signal power in (2) and w'Cw is the interference plus noise power in (2) with C being the
covariance of the interference plus noise, i.e. C=E[z"'z].

2.5 The Target Steering Vector s

The normalized steering vector for the target is given by the expressions

s=[s,(0) s,(8)...s,, (0] /NNM C))
5,(0) =" Vivs (0) fork=1,..,.M (5)
$,(60)=1[8,,(6) $,,(6,) ... 85,(6,)] (6)

Proc. of SPIE Vol. 7351 73510U-3



$:.(6,) = e/ ok =1,...,N @)

fo=1alf ®)
fo=2v,/A=2(v,/0)f, )
f,=UT, (10)

0, =(d/ 2)sin(6)) (11)

where: a) 6 is the boresight position of the target which is of 0° for the case displayed in Fig. 1 as well as in the
simulations; b) f. is the carrier (or operating) frequency; ¢) g, is the normalized §; d) T, is the pulse repetition interval
(PRI); e) £, is the pulse repetition frequency (PRF); f) v, is the target radial velocity; g) c is the speed of light; h) f} is
the target Doppler; and i) 7' is the normalized Doppler.

2.6 The Interference Plus Noise Covariance C=E[z"z]

The interference plus noise covariance C is given by the following covariance matrix tapers (CMTs) structure [7]
C:{(C:+C’:)O(CRW+CICM+CCM)}+ {C;0Cem} +Cy (12)

/

where C ,, C_, Cf, C j, Crw, Ccm and C ¢y are covariance matrices of dimension NM x NM and the symbol ‘O’

denotes a Hadamard product or element by element multiplication. These covariances correspond to: C , to thermal white
noise; C C’ to front clutter; Cf to back clutter; C; to jammer; C ryw to range walk; C |y to internal clutter motion; and C ¢y
to channel mismatch. The defining expressions for each of these covariances are given next starting with the front clutter
covariance Cf which in knowledge-aided radar is evaluated making use of prior-knowledge such as SAR imagery (2).

Note that the back clutter covariance Ci will be assumed to offer a negligible contribution to C since we will be

assuming in our simulations that the back antenna gain constant K " is of 10, i.e. — 40 dBs.

2.6.1 The Front Clutter Covariance C c’

NC
Ccf: = ingi (et)ci(eAAM)cfl (QAAM) (13)

i=1
€i(Oaan) = [fgl(g;’gAAM) ./92(9£’9AAM) w7 Cu (eé’eAAM )]T (14)
.f’Ek(Hé,HAAM) = em(k_l)fb(HC’HA"M)91(95) fork=1,.,M (15)
€10 =[C,,(82) €,,(6,) oo Oy (0] (16)
Crp (6’5) = eﬂ”(k_l)gc fork=1,.,N (17
15000, = P8, (18)
B=W,T)Nd/2) (19)
0. =(d/ 2)sin(0, + 60,43, (20)

where: a) the index i refers to the i front clutter cell on the front range bin section shown in Fig. 1; b) HZ is the
boresight angle of the i clutter cell; c) & .y 1S the antenna array misalignment angle; d) X, is the i" front clutter source
cell power; €) 6, is the target boresight angle; f) g, (6,) is the antenna gain linked to the i" front clutter cell; g)
¢;(0,,,) is the front NM x 1 dimensional and complex i" clutter cell steering vector; h) v, is the radar platform speed;

i) T, 1is the PRI; j) f; is the PRF; k) 5; is the normalized 6’;; [) d is the antenna inter-element spacing; m) A is the
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operating wavelength; and n) £ is the ratio of the distance traversed by the radar platform during the PRI, i.e. v, T}, to the
half antenna inter-element spacing, d/2. Finally, the first element of the NM by NM matrix Cf ~ divided by the noise

variance is the front clutter to noise ratio given by
) N
CNR'=C/(L,l)/o} = >x,g,(6)/ C; @n
=1

where 03 is the variance of the thermal white noise whose value is assumed to be of one in our simulations, i.e., crf =1.

2.6.2. Thermal White Noise Covariance C,
2
C =ol,, (22)

where O'j is the average power of thermal white noise and /y), is an identity matrix of dimension NM by NM.

2.6.3. Jammer Covariance C,

C, = %p,-gi (0) Uy @y ) O (i(0)* 50" (23)
§0) =15,(6)) 1,(8)) -5y (0T (24)

jk(e}) = j] (9}) fork=1,..M (25)

10 =13140) §,10)) . iy 1(0))] (26)

Jra (9,3) = ejzﬂ(k_l)éi’ fork=1,..,N (27)

0; ~%5in0)) 28)

where: a) the index i refers to the i jammer on the range bin; b) N, is the total number of jammers; c) 6’; is the
boresight angle of the i jammer ; d) ® is the Kronecker (or tensor) product; e) /), is an identity matrix of dimension M
by M; f) Inw is @ unity matrix of dimension N by N; g) p, is the i jammer power; and h) j(Hj) is the NM x 1

dimensional and complex i jammer steering vector that is noted from (23)-(28) to be Doppler independent.
The first element of the NM by NM matrix C, defines the jammer to noise ratio

INR=C,(L)/o? = lNgl 9.2.(0)/0° (29)
2.6.4. Range Walk Covariance CMT C,,,
CRW = CZmWe ® C%fw (30)
[Co = o™ G1)
ij;/ce =Ly (32)
p=AA/ A =A/{ARAGY = A/ {(c/ B)AO} (33)

where: a) c is the velocity of light; b) B is the bandwidth of the compressed pulse; ¢) AR is the range-bin radial width; d)
A0 is the mainbeam width; e) A is the area of coverage on the range bin associated with A at the beginning of the range
walk; ) AA is the remnants of area A after the range bin migrates during a CPI; and g) p is the fractional part of A that
remains after the range walk.

2.6.5. Internal Clutter Motion Covariance CMT C oM

CICM = Clllgl]te/[ ® C%\;e (34)
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ro, b (bA) (35)
r+1 41 (bA) + (47| k-i | T.)?

time
[CICM ]i,k =

C;gj/cte = Ly (36)
10log,, r=—15.5log,, @ —12.1log,, f, +63.2 (37

where: a) f. is the carrier frequency in megahertz; b) ® is the wind speed in miles per hour; c) r is the ratio between the
dc and ac terms of the clutter Doppler power spectral density; d) b is a shape factor that has been tabulated; ¢) ¢ is the
speed of light; and f) T, is the pulse repetition interval.

2.6.6. Channel Mismatch Covariance CMT C .,
Cow =Cy0C0C,, (38)

where C,,,C,, and C,, are composite CMTs that are defined next.

2.6.7. Finite Bandwidth: C, is a finite (nonzero) bandwidth (FB) channel mismatch CMT

Crp = C%e ® Cflgce )

C%e =Lypm (40)

[Cyee], =(1-Ae/2)’sinc*(Ap/2) for i#k @0
, 1

[C%M ii =1—A5+5A82 fOV i=L.,N (42)

where A& and A¢ denote the peak deviations of decorrelating random amplitude and phase channel mismatch,
respectively. The square term in (42) corrects an error in the derivation of equation (4.21) in [7].

2.6.8. Angle Dependent: C ,;, is a reasonably approximate angle-independent CMT for angle-dependent (AD) channel
mismatch [7] given by

C,p =Cly ®CT (43)

C%e =Ly (44)

(e, = Sinc(B|k—i|%sin(A9)) for i+ k (45)
[Cip 1 =1 (46)

where B is the bandwidth of an ideal bandpass filter and A@ is a suitable measure of mainbeam width.

2.6.9. Angle Independent Narrowband: C,, is an angle-independent narrowband or NB channel mismatch CMT

CNB =qq” (47)

a= El 92 QM]T (48)

q, =4, fork =1,.M (49)

q :|:E ejyl £ e”2 . & e‘ij:| (50)
-1 1 2 N

where Ag,,...,Ag, and Ay,,..., Ay, denote amplitude and phase errors, respectively.
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2.7 The Weighing Vector w

The weighting vector w that maximizes the SINR (3) is derived via the use of Schwarz’s inequality which
yields the Wiener-Hopf equation
w=C"s (51)
where C is the interference plus noise covariance (12) and s is the normalized steering vector of the target.

2.8 The Optimum SINR Performance

The optimum SINR performance, SINRy,, is derived from the substitution of the weighting vector (51) in (3) to yield
SINRgy =s"' C''s. (52)

3. THE SAMPLE COVARIANCE MATRIX INVERSE
The sample covariance matrix inverse (SCMI) algorithm is stated next.
The SCMI Weighting Vector wgcyy

The SCMI counterpart of the optimum SINR Wiener-Hopf weighting vector (51) is as follows
— SCM~ -1
WsceMmr = C’s (5 3 )

L
R o o & J | (54)
scm - i=l diag
where: a) SEMC denotes the sample covariance matrix (SCM); b) P hined is @ diagonal loading term where ozd,-ag =10 is
used in our simulations to address numerical problems linked with the M inversion: and ¢) {Z;,i=1,..,.Lscy} denotes
Lgcy samples from Lgp range-bins. Thus

Lsers = LseanLrp (55)

where Lg.,, represents the number of scans of Lgzp range-bins. In our simulations we will use Lgcy =256 where the
number of range bins Lgp is 64 range-bins for a 1024 by 256 SAR image to be discussed in Section 6 and the number of
scans Lg,, of this image will be 4.

Scan

3.2 The Simulation Scheme

To derive the set of range-bin measurements {Z;, i=1,..,Lscy} the following simulation algorithm will be used
1/2
Z -c’ (56)
where n; is a zero mean, unity variance, NM dimensional complex random draw and C; is the interference plus noise

covariance (12) associated with the i range-bin. All the radar and environmental conditions that are used to evaluate
expression (12) for each range-bin are summarized in Table 1, inclusive of jammer assumptions.

4. THE KNOWLEDGE-AIDED POWER-CENTROID ALGORITHM

In this section the knowledge-aided power-centroid (KAPC) algorithm is stated which derives the prerequisite range-bin
power-centroid from the stored SAR imagery.

4.1 The Knowledge-Aided Power-Centroid (KAPC) Algorithm
The knowledge-aided power-centroid (KAPC) algorithm is given by the following weighting vector expressions

Wgapc = [KAPCC]-IS (57)

KPCC={( MrecL + ¢ )O(Crwt+ Ciemt+ Cem)i+ {C;0Cem} +C, (58)
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where the covariances C’; , Crw, Cicm, C om, Cy, and C,, are the same as those for the interference plus noise covariance

C given by expression (12), and “"“C;. predicts C. of (12).

4.1.1 The KAPC Predicted Front Clutter Cell Covariance KAPCCZ

The defining expressions for KAPCCE are given by

Hrec; = ig (O")e,(0 e (0 110 (59)
- Ne Ne

C(xOg) =Y ix,g,(6,)/ Y. xg,(6,) (60)
pa p

05>%® = C(xOg)7/ N, - /2 (61)

xOg =[x,g, X,&, - Xy &y, ] (62)

where: a) ¢,(8,,,),x; andg, (6,) are as defined for C. (13); b) xOg is the Hadamard product or element by

element product of the power emitted by the investigated range-bin X=[x, x, ... xy ] and the front antenna gain
g=[g g - gy 1; c) C(xOg)is the power-centroid which can be any real number from 1 to N¢; d) 055% s the

power-centroid boresight angle in radians; and ) g (9:"°”) is an appropriately normalized antenna pattern version of

(1) that is shifted to the power-centroid and serves as a compensating antenna pattern (CAP) for the lack of either partial
or total prior knowledge about the clutter.

4.1.2 The Compensating Antenna Pattern g, (0.°%)

The CAP predicts the clutter-antenna-gain product set {x,g, (6,):1=1,...N¢} of C_ (13) and is defined by

the following antenna pattern expression

2
sin{N;r%(sin(Hé) - sin(Hg“Og’))}

(63)

g () -k

sin{;z%(sin(eg,)—sin(ef"‘o’“))}

HFCCL (L) = CL(L) (64)
where K is a normalizing gain that results in the matching of the average clutter power of the front clutter covariance

C. and its prediction KAPCCL . This scheme which is generally suboptimum since it only approximates the true

expression for C. will be found in our simulations to be approximately 1 dB away from the optimum Wiener-Hopf

algorithm due to its evaluation of the clutter power-centroid from the true clutter (60) which is available as prior
knowledge. However, it must also be noted that earlier in [3]-[4] it had been shown that this scheme also produces
outstanding results when the power-centroid of (60) is derived using a SAR image that is a reconstructed version of an
original SAR image that is highly lossy compressed.
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5. THE KNOWLEDGE-UNAIDED POWER-CENTROID ALGORITHMS

Two power-centroid schemes that do not use clutter prior-knowledge are stated next. The first is a knowledge-unaided
power-centroid (KUPC) algorithm that evaluates the power-centroid from the same on-line range-bin measurements {Z,;,
i=1,..,Lscy} that are used to construct the SCMI algorithm. This KUPC scheme requires a predicted clutter covariance
(PCC) matrix to be derived on-line and has at its disposal full or partial knowledge of other radar interferences and noise
covariances. The second scheme is a fast KUPC (F-KUPC) algorithm that quantizes the power-centroid derived from {Z;
, i=1,..,Lscyrt. The quantized power-centroid is then used to extract from a memory a PCC that had been previously
designed off-line using a CAP directed towards the quantized power-centroid.

5.1 The Knowledge-Unaided Power-Centroid (KUPC) Algorithm

The KUPC algorithm is given by the following weighting vector expressions
wrope=[F7CT s (65)

KUPC o= ((F"°CL + CL ) O (Cry+ Crem+ Cow)}t+ {C10 Con} +Cy (66)

where the covariances Cf , Crw> Ciems C om, Cy, and C,, are the same as those for the interference plus noise covariance
C given by expression (12) and are either assumed to be zero or known, and KUPCC; predicts the front clutter cell
covariance for C. in (12).

5.1.1 The KUPC Predicted Front Clutter Cell Covariance KUPCCZ

The defining expressions for KUPCCQ are given by

Ne _
KUPCCZ- = Zg, (gcc )ci(eAAM)ciH () (67)
i1
—  Ne-l
1 M<-—2 (68)
C- NL+1+M NC?ISMSNC 1
2 2 2
N, NeZl
’ 2
 N+MA
M= 3 kmagm,] /m, (69)
i—2
- — N.+1
QC :L C _ C 70
‘ NC( . j (70)
N. -1 c N.-1
_ Ve ZSQCC SC_Z an
N. 2 Ne 2
J Y
o sin{Nﬂ'Z(Sin(Hé)—sm(gg ))} (72)
&) =R -
sin{ﬁz (sin(6).) —sin(6F ))}
KUPCG (L) = m, (73)

where: a) ¢,(6,, M) is as defined for C. (13); b) C is the estimated power-centroid of the range-bin using the sample

covariance matrix in (54), and inclusive of any type of disturbance and noise; ¢) M is a real scalar quantity which is a
function of an appropriately determined set of constants {k;}, the real power of the on-line derived measurements {Z,} or
m;, and the imaginary part or Imag[.] of each element of a set of N+M-2 distinct and complex correlations {m;} selected
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from the first row of the NM x NM dimensional sample covariance matrix (SCM) in (54), e.g. when M=N=2 the three
correlation elements {m;: i=1,2,3} are the first, second, and fourth elements of the SCM’s first row as seen below
my my X my
1 Lng 72" - X X X X (74)
Lscy iml X X X X
X X X X

and when M=N=3 the five correlation elements {m;: i=1,2,3,4,5} are as seen below

mlmzrn3XXm4XXm5—‘
X X X X X X X X X
X X X X X X X X X

Db, |XOX X X X X xox x|, (75)
> ZZ =|x X X X X X X X X
Lsou =1 X X X X X X X X X
X X X X X X X X X
X X X X X X X X X
X X X X X X X X X|

and so on for higher dimensions; and d) Hg is the boresight angle in radians associated with C ; and d) the values of the

constant gains {k; } used in our simulations are found from the following expression
1

S (76)

k =—Kg(-1)
where the value of Ky is 60.

5.1.2 Justification for KUPC expressions (68), (69) and (76)

The basic idea behind the power-centroid expressions of (68), (69) and (76) is explained next using the
optimum M=N=2 case depicted in Fig. 2 for f#= 1 as motivation. This figure shows a clutter range-bin made of N4
clutter cells which are symmetrically spaced with respect to the target that is being investigated at the boresight angle of
6,=0°. Thus we have that the four clutter cell locations { ;, 65, 6;, 0,} send to the two elements of the receiving antenna

the clutter-antenna-gain modulated steering expressions \/xlglvl,\/ngzvz,\/ x3g3v3,\/x4g4v 4}, respectively.

Furthermore, the two antenna elements in this example produce during a CPI two different measurements. All of these
measurements are represented in Fig. 3 with the matrix

[Z(sntl) Z(Szafl)} (77)

z(sy,8,)  z(s,,1,)

Neo=4, p=1, M=2 & N=2

Range-Bin
6=0°
6,=-22.5° ) 6,=22.5°
-45°g o 45°

6,=-67.5° 6,=67.5°

\V X282V> \¥383V3 /

-90° e X &1V VX184V4 e 90°
Antenna

z(s;,8)  2(s,,1) .:-
z(sy,t))  2(55,t,) 'E‘
SPACE

Fig. 2 Space-Time Geometry For An Optimum Power- Centroid Algorithm Example
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where the left element of each (s, #) pair, i.e. s;, indicates the i" antenna element and the right element t; denotes the Vi
received pulse during a CPI, while the four measurement values depicted on the matrix, i.e. {z(s;#)}, are a function of
the received modulated steering vectors as shown below

4
z= [Z(Sl’tl) z(s,,t,)  2(8,,1)) Z(Szatz)]T = zvxigfvi (78)
i=1
with the four clutter steering vectors given by the expression
fﬂsin& /%sinﬁ jﬂsinﬂ ! .
v, = [vi(Sl’tl) IACNIRRACNY Vi(szatz)]T =\l e’ et et |, FlL234 (79)

Next an expression is found for the correlation matrix E[xx”] under the assumption that each clutter return is
uncorrelated from each other, i.e. it is assumed that £[/x,g, \/x,g,]1=0 fori# j and E[\x.g, /x,g,1=xg, fori=j.

Thus it is found via straight forward algebraic manipulations and the symmetry condition 6;=-6,=22.5° and 6,=-
6, =67.5° deduced from Fig. 3 that

E H _ M(tl’tl) M(tl’tz) _ M(tl’tl) M(tl’tZ) (80)
Do) M0 M)

M(#,,1) M(5,,1,)

M(tl»tl):|:mi m2:|’ M(tlﬂtz):|:mz m31| 81
m, m mm,
where the three correlation elements in (81) are found from the following three expressions
m=xg +X8, + X8 +Xx,8, (82)
j@sinﬁ4 j@sinﬁ3 —j@sinﬁ3 —j@sinﬁ4
m, =Xx,g,e +x,g,e * +x,8.6 * +x,8,e * (83)
and
jﬂsinQ4 jﬂsin& —jﬂsin& —jﬂsinﬁ4
m,=xge * +x,8,e ' 4+xge f +xge * ) (84)

Next the moment expressions (82)-(84) are related to the desired evaluation of C(xOg) (60) for the clutter range-bin of
Fig. 2 which is for this case as follows:

C(Xog):X1g1.1+x2g2.2+x3g3.3+x4g4_4' (85)

X181 T X8, T X385 T X,8,
An algebraic manipulation of this expression then yields

C(xog):ﬂJrM 0383 T8 | (86)
2 2my | x,84— %8

where the denominator of (85) now appears as m; (82) in (86) and the first term to the right of (86) is given by 2.5 which
is the assumed boresight position of the target of 0° as well as the position of the power-centroid when either a
symmetrical condition for the clutter, i.e. x;2;=x,g, and x,g,=x,;g; exits or the clutter difference closest to the target, i.e.
X323-X2¢2, 1S equal to the negative of three times the clutter difference away form the target, i.e. -3(x,g,-x;2;). We next
use expressions (82)-(84) to derive the following relationships between the real and imaginary parts of m, and m;

1 1
Real[m,] _ o 2md X383+ X8, (87)
Real[m, ] cos 7sm 6, | cos 7sm 0, X8, + X%
5 in 2md iné. in| 2md iné,
{Imag[mz] _ ) A Iy A S |:x3g3—x2g2:| (88)
X484 — X8

Imaglm; ]| sin(@ sin 92) sin(@ sin @j
A ’ A
Solving the linear system of equations (88) for the clutter differences vector under the constraint that the matrix must be

invertible, and then substituting this result in (86) yields the desired optimum expression for the range-bin power-
centroid C(xOg) in term of the three correlation elements of E[xxH ], 1.e. m;, m; and m;, as follows
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-1

sin @sinﬁ sin @sina
cxog =13 2 L Fmag[mzq (89)
2 2m, Sin(“;’dsm@j sin[“;ﬁsin 9“} Imag[m, ]

To get an idea of the values derived for this simple and optimum case we evaluate (89) for the assumed symmetrical
conditions of Fig. 2 and under the assumption that d/A=0.5 (also used in our simulations) to yield

C(xOg) = >—[2.10405 - 2.17625]rmag[m2] /ml (90)
2 Imag[m;] |
This expression can then be rewritten as follows
3
C(xOg)= % + Z:kllmag[m[]/ml , k,=-2.10405(-1)" &k, =—2.17625(-1)’ 91
i=2

where a comparison of expressions (68), (69) and (76) with (91) should help explain why the forms for expressions (68),
(69) and (76) are being used for the real-world radar problem simulated in this paper. It should also be emphasized that
the selected simulation values of N=16, M=16 and N=256 do not allow us to generalize (89) to include this case.
Moreover even if this was possible it is likely that numerical stability problems will surface when dealing with the
inversion of high dimensionality matrices. This is why the simple and well behaved expressions (68), (69) and (76) are
used by us.

5.2 The Fast Knowledge-Unaided Power-Centroid Algorithm

The fast KUPC or F-KUPC algorithm is characterized by the following weighting vector expressions
_ rF-KUPC~q-1
Wekupc= [ Cl's (92)

FRUPEC = (TMCL+ €LY O (Crwt Crem+ Com)}+ {C50 Cou} +C, (93)
where the covariances Ci’ , Crw, Cicm, C om, Cy, and C,, are the same as those for the interference plus noise covariance

C given by expression (12), and FﬁKUPCCZ predicts the front clutter cell covariance for C; in (12).

The defining expressions for F_KUPCCL are similar to those for KUPCCZ except that the centroid value derived via (68),
(69) and (76) are now quantized. Thus

NC a
F_KUPCC; = Zg, (‘9CC A )czH (0 1101 )ZKUPCCZ

€(x0g)=C(x0g) (94)

i=l

where the quantized power-centroid é is defined as follows:
C= rnjn‘é el (95)
G
é E{Nc =1 2(Ne=D) 3We=D)  (L-D(Ve —1)} (96)
L L L L
2

sin{Nn%(sin(ag)—sin(ef ))H 97)

g 0=k

sin{n%(sin(ag)—sin(ef ))} ‘
R CL ) =m, (98)

with L denoting the finite number of CAPs that may be used in (94) to predict the C. , and C is the unquantized

centroid of (68). Clearly this algorithm lends itself to an extremely fast implementation where sets of L predicted clutter
covariances (PCCs) are designed off-line for as many antenna array misalignment angles {fxan } as desired. In our
simulations, that we discuss next, we will consider two cases for L (or equivalently the number of CAPs). These cases
are L=3 and L=11 where in addition N=M=16 and Nc=256, and Lgcy =256.
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Fig. 3 Synthetic Aperture Radar (SAR) Image of Mojave Airport in California

6. SIMULATION RESULTS

In this section several simulations results are presented that use the 64 by 256 SAR image seen in Fig. 3. The original 4
megabytes SAR image of Fig. 3a is made up of 1,024 by 256 pixel elements representing 1,800 by 1,500 meters of the
Mojave Airport in California where each pixel denotes clutter power. Sixteen consecutive rows of Fig. 3a are then
averaged to form the 64 x 256 image of Fig. 3b. In our simulation each row of Fig. 3b is a range-bin with 256 clutter
cells for each. In addition, the simulation radar parameters, disturbance and noise values used are those of Table 1.
The SAR image of Fig. 3 as well as the matlab program used in our simulations will become available in the author’s
Web site [8] in the near future.

The results are summarized in four figures, i.e. Figs. 4-7. The basic difference between the four figure cases is in
the use of jammers and the number of CAPs used. Figs. 4-5 present cases where three jammers are used at boresight
angles of -60°, -30 ° and 45 ° with corresponding JNR values of 52, 55, and 66 dBs, respectively, while Figs. 6-7 show
simulation results with no jammers used. On the other hand, Figs. 4 and 6 present results for eleven CAPs and Figs. 5
and 7 for three CAPs. Each figure case has seven displays. First Figs. 4a, 5a, 6a and 7a show the SINR error in dBs as a
function of range-bin where note is made of the average SINR error over all range-bins for the three cases which are the
SCMI scheme of (53)-(56), the KAPC scheme of (57)-(64), and the F-KUPC scheme of (92)-(98). For example, in Fig.
4a KAPC is noted to yield an average SINR error of 0.87 dBs, F-KUPC of 1.32 dBs, and SCMI of 7.59 dBs. These
results are satisfactory since more than 6 dBs improvements are derived over the SCMI with both the KAPC and F-
KUPC schemes, while also yielding in both cases an average SINR radar performance close to the optimum SINR radar
performance. In Figs. 4b-7b the power of the KAPC and F-KUPC schemes, i.e. (64) and (98), respectively, is depicted
where the fluctuations from range-bin to range-bin found with the F-KUPC case reflects its derivation from the average
power m; that is derived from the use of the sample covariance matrix (54) without the use of the loading factor of
course. In Figs. 4c-7c the range-bin power-centroids corresponding to the KAPC algorithm (60), the KUPC algorithm
without centroid quantizations (68), and the F-KUPC algorithm with centroid quantizations (95) are shown. Figs. 4d-g,
5d-g, 6d-g and 7d-g specifically display the radar system performance for range-bin number one. In Figs. 4d-7d the
actual range-bin clutter, KAPC predicted clutter power {(59),(63),(64)} and F-KUPC predicted clutter power
{(94),(97),(98)} is displayed as a function of clutter cell number. In Fig. 4e-7¢ the optimum, KAPC, F-KUPC and SCMI
SINRs are displayed as a function of normalized Doppler. In Fig. 4f-7f the optimum, KAPC, F-KUPC and SCMI
adapted patterns [7] are shown as a function of clutter cell number. Finally in Fig. 4g-7g the optimum, KAPC, F-KUPC
and SCMI interference plus noise covariance eigenvalues [7] are plotted for each case.

The results presented in Figs. 4-7 are typical results for the compared schemes as researchers should be able to
confirm using their own matlab simulations or those that will become available in [8]. It is thus concluded that F-KUPC
radar offers a major improvement over KAPC radar. This result also brings further support to the mathematical
uncertainty-information/certainty-latency duality that has resulted in both KAPC and F-KUPC radar. In the second part
of this two parts paper series the recently discovered [3] physical dual for our mathematical uncertainty-
information/certainty-latency duality is presented in some detail and illustrated with simple physical examples in a more
general unification setting.
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Fig. 4. Eleven (11) CAPs with Jammers at -60°, -30° and 45° with 52, 55, and 66 JNRs in dBs, respectively. (a) SINR
Error. (b) Range-Bin Power of Clutter Plus Jammer. (¢) Range-Bin Centroid of Clutter Plus Jammer. (d) Range-Bin #1
Clutter and its Predictions. (¢) Range-Bin #1 SINRs. (f) Range-Bin #1 Adapted Patterns. (g) Range-Bin #1 Eigenvalues
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200 250

Centroid Value

SINR in dBs

Range-Bin

©

SINR Cases

-60

—— Optimum

KAPC, 0.73 dBs
— * ~FKUPC, 1.14 dBs
— SCM|, 8.37 dBs

s

0.3 -0.1 0.1 0.3
Normalized Doppler

(g

Eigenvalue Cases

05

80

70

60

Eigenvalue in dBs

Optimum
KAPC

— & -FKUPC
—

I .
50 100 150 200
Clutter Cell Number

Proc. of SPIE Vol. 7351 73510U-15




@

SINR Error Cases

12
KAPC, 1.27dBs
~ + -FKUPC, 140 dBs
10 SCMI, 543 dBs 1

SINR Emorin dBs
(2]

4 ]
Mo b e r
2 » “/‘\;Hw “H‘\ ) A r' “\ il
\ o f ) LIRVATA’S
» N ¢ \
0 . . . . . .
10 20 30 40 50 60
Range-Bin
(®) ©
Clutter Power Cases Clutter Centroid Cases
75 220
KAPC
== ~Kkupc & FKuPC / 200
180
160
é :5 140
£ T 120
g £
£, 4
[ 8 100
80
60
40
— * - FKUPC
40 , . . . . . 20 T . . . . .
10 20 30 40 50 60 10 20 30 40 50 60
Range-Bin Range-Bin
(d) ©
Clutter Cases SINR Cases
60
40
20
2 «n
5 g
£ 0 £
£ z
o 7]
-20 |
l -40 —— Optimum 1
40 Actual KAPC, 0.82dBs
KAPC 50 — * -FKUPC, 1,05dBs i
— * ~FKUPC SCMI, 5.20dBs
60 . n n . . . n : .
50 100 150 200 250 05 03 -0.1 0.1 03 05
Clutter Cell Number Normalized Doppler
® (®
Adapted Pattemn Cases %0 Eigenvalue Cases
0
‘ Optimum
80| KAPC ]
-5 R — & -FKUPC
4 70 scMmi ]
3 -10f . ,
] | L6 1
£ @
€ | ~ 2 50 ]
% Y Y ' (. F]
o 1\ \ £ 40 1
o 204 \ 1 » §
2 I | i
2 J' 30 1
< " 1
—— Optimum 20 i
KAPC
— * ~FKUPC 1 10
SCMI
n n . . 0 L .
100 150 200 250 50 100 150 200 250
Clutter Cell Number Clutter Cell Number
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(4]
(3]
(6]

Table 1. Radar Simulation Parameters

Antenna N=16, M=16, d/r="%, o.=1
Front antenna gain constant, (1): K/ = 56 dBs
Back antenna gain constant : K = -40 dBs
Carrier frequency, (9): f. = 10° Hz
Pulse repetition frequency, (10): /; = 10° Hz
Antenna array misalignment, (13): ¢,,,, = 2°
Clutter N, =256
Radar’s ratio £, (19): f =1
Jammers Jammers were used at -60°, -30° and 45° with 52, 55 and 66
JNRs in dBs, respectively, inclusive of antenna gains.
Range Walk Fraction of remaining area after range walk, (33):
£=0.999999.
Internal Clutter | Shape factor, (35): b=15.7
Motion Wind-speed, (37): @ =15 mph
Channel Mismatch: | Amplitude error, (50): Ag,= 0 for all i,
Narrowband Phase-error, (50): Ay, fluctuates with a 5° rms for all i
Channel Mismatch: | Amplitude peak deviation, (41): Ae=0.001,
Finite-Bandwidth | Phase peak deviation, (41): A¢=0.1°
Channel Mismatch : | Bandwidth, (45): B =10° Hz
Angle-Dependent | Mainbeam width, (45): AG@=28.6°
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