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ABSTRACT 

 
In this first part of the latest latency-information theory (LIT) and applications paper series powerful and fast 
‘knowledge-unaided’ power-centroid (F-KUPC) radar is revealed. More specifically, it is found that for real-world 
airborne moving target indicator radar subjected to severely taxing environmental conditions F-KUPC radar 
approximates the signal to interference plus noise ratio (SINR) radar performance derived with more complex 
knowledge-aided power-centroid (KAPC) radar. KAPC radar was discovered earlier as part of DARPA’s 2001-2005 
knowledge-aided sensor signal processing expert reasoning (KASSPER) Program and outperforms standard prior-
knowledge radar schemes by several orders of magnitude in both the compression of sourced intelligence-space of prior-
knowledge, in the form of SAR imagery, and the compression of processing intelligence-time of the associated clutter 
covariance processor, while also yielding an average SINR radar performance that is approximately 1dB away from the 
optimum. In this paper, it is shown that the average SINR performance of significantly simpler F-KUPC radar emulates 
that of KAPC radar and, like KAPC radar, outperforms a conventional knowledge-unaided sample covariance matrix 
inverse radar algorithm by several dBs. The matlab simulation programs that were used to derive these results will 
become available in the author’s Web site. 
 
Index Terms— Latency, Information, Intel-Space Compression, Intel-Time Compression, Knowledge-Aided, 
Knowledge-Unaided, Adaptive Radar, Sample Covariance Matrix Inverse  
 

1. INTRODUCTION 
 
A straight forward approach to adaptive airborne moving target indicator (AMTI) radar, see Fig. 1, that does not use 
clutter prior-knowledge is the sample covariance matrix inversion (SCMI) scheme that is used to approximate the 
optimum Wiener-Hopf weighting vector that arises from maximizing target signal to interference plus noise ratio (SINR) 
for an investigated range-bin [1]. The construction of the optimum Wiener-Hopf algorithm requires knowledge of the 
interference plus noise covariance of the range-bin. The inverted range-bin interference plus noise covariance is then 
multiplied by the steering vector of the assumed target to yield a complex weighting vector of dimension NM where N is 
the number of antenna elements and M is the number of its transmitted pulses during a coherent pulse interval (CPI). 
This weighting vector is then multiplied by an NM dimensional complex vector that is measured by the radar receiver 
and reflects range-bin target, clutter and additional radar interferences and noise. The result of this multiplication is a 
complex scalar variable that is used by the AMTI to determine if a target appears on the range-bin or not. Since the 
actual interference plus noise covariance is not available in a real-world scenario, the SCMI scheme addresses this issue 
by using one or more measurements from range-bins that are adjacent to the range-bin in question to construct a sample 
covariance matrix (SCM). Unfortunately, however, in a real-world non-stationary environment this very simple scheme 
only crudely approximates the exact range-bin covariance, which often manifests itself in an unsatisfactory SINR radar 
performance. To address this problem clutter prior-knowledge in the form of SAR imagery has been advanced, such as 
was done by DARPA in its 2001-2005 knowledge-aided sensor signal processing expert reasoning (KASSPER) Program 
[2]. The use of these SAR images as prior-knowledge achieves SINR performances that significantly outperform the 
SCMI algorithm as well as approximate the optimum results derived from the optimum Wiener-Hopf scheme. On the 
down side, unfortunately, the use of SAR imagery prior-knowledge has the drawback of increasing the complexity of the  
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Fig. 1 Airborne Moving Target Indicator Radar System 
 

radar system due to the storage space needs for the ‘sourced intelligence-space (or intel-space in short)’, i.e. the SAR 
imagery, and the ‘processing intelligence time (or intel-time in short)’ needs for the on-line evaluation of the clutter 
covariance from SAR imagery. To address this problem a novel latency-information theory (LIT) methodology has been 
advanced [3] whose catalyst was a DARPA KASSPER grant [4] for the compression of SAR imagery via minimum 
mean squared error (MMSE) predictive-transform (PT) source coding [5], as well as previous Ph.D. work in control 
theory [6]. In particular, the advanced control work formulated a fundamental parallel processing approach to quantized 
control using as motivation the discovery in 1978 of an uncertainty-communication/certainty-control duality, unexplored 
until then, that exists between an uncertainty ‘digital’ communication problem, i.e. Matched Filters, and a certainty 
‘quantized’ control problem, given the name Matched-Processors from a duality perspective. Thus not surprisingly LIT 
was formulated by the author as a unified approach to the compression of intel-space—in binary digit or bit units of a 
passing of time uncertainty nature—and the compression of intel-time—in binary operator or bor units of a configuration 
of space certainty nature. Using this novel LIT conceptualization a knowledge-aided power-centroid (KAPC) radar 
algorithm was found that yielded orders of magnitude improvements in both intel-space and intel-time savings over 
standard techniques. The fundamental idea behind this low storage and very fast clutter prior-knowledge scheme was the 
use of off-line designed predicted clutter covariances (PCCs). The PCCs were developed using a mathematical model of 
the physically produced antenna pattern that pointed in the direction of the range-bin power-centroid rather than the 
target. The objective of this model was to serve as a compensating antenna pattern (CAP) for the information lost from 
SAR images that had been compressed by a factor of 8,172 in a highly lossy manner. The intel-space compression of 
these images was also done using a radar blind scheme that made it possible for their use in any type of radar system. 
The main purpose of this paper, is to show that in fact the aforementioned powerful and fast KAPC scheme can be 
replaced with an even more powerful and fast ‘knowledge-unaided’ power-centroid (F-KUPC) scheme. The main virtue 
of F-KUPC radar is that it does not need the use of clutter prior-knowledge in the form of SAR imagery for its 
evaluation of the range-bin power-centroid as can be easily verified using matlab simulations of standard radar systems. 
This is the case since with a very small number of on-line scannings of each range-bin in question a very simple on-line 
algorithm can be used yielding an outstanding on-line estimation of the prerequisite power-centroid. 
 
 The rest of the paper is organized as follows. In Section 2 the optimum AMTI radar defining equations are 
stated. In Section 3 the sample covariance matrix inverse scheme is summarized. In Section 4 the previously offered 
KAPC radar algorithm is summarized. In Section 5 the newly revealed F-KUPC radar scheme is advanced. In Section 6 
simulations for real-world AMTI radar under severe environmental disturbances are given and then conclusions are 
drawn. 
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2. OPTIMUM AIRBORNE MOVING TARGET INDICATOR RADAR  

 
The main defining equations for AMTI radar are summarized next for ease of reference. 
 
2.1 The AMTI Radar System 
 
         In Fig. 1 the AMTI radar system is displayed. It consists of: a) N antenna elements that emit M pulses during a 
coherent pulse interval (CPI); b) an antenna pattern with its mainbeam pointing to the assumed target location; and c) a 
front clutter range-bin mathematically modeled as NC clutter patches or cells that radiate to the AMTI receiving antenna 
reflections of the M pulses transmitted by the antenna elements as well as the investigated target steering vector times its 
power. In our simulations the target power times its steering vector will be normalized to one and the target boresight 
angle θt with respect to the moving AMTI antenna is of zero degrees, i.e. 00=tθ . In addition, the assumed NC number 
of cells is even where the boundary line between cells NC/2 and (NC+2)/2 is investigated to determine if a moving target 
appears there. When NC  has a large value the first and last clutter cells have a clutter boresight angle i

Cθ  that is slightly 
greater than -90o for i=1 and slightly less than 90o for i=NC, respectively. In Table 1 the NC, N and M values used in our 
simulations are summarized along with other radar parameters. 
 
2.2 The Analytical Antenna Pattern Model 
 

Regarding the antenna pattern of Fig. 1, it is assumed that the ith clutter cell receives from this pattern the ith 
antenna gain which is derived from the following analytical expression 
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where i=1,..,NC, θt is the target boresight angle, d is the antenna inter-element spacing, λ is the operating-wavelength, 
and Kf is the front antenna gain constant.  
 
2.3 The AMTI Scalar Complex Output 
 

The scalar complex output of the AMTI system is given by the expression 
y = wH (z+s)                                                                       (2) 

where: a) s is an NM dimensional complex normalized steering vector representing the target; b) z is an NM dimensional 
complex interference plus noise complex vector; c) ‘H’ denotes transpose and complex conjugation; and d) w is an NM 
dimensional complex weighting vector that is designed with the view of maximizing SINR. 
 
2.4 The Signal to Interference Plus Noise Ratio (SINR) 
 
       The SINR expression that is maximized is given by  

SINR=wHssHw/ wHCw.                                                               (3) 
where wHssHw is the signal power in (2) and wHCw is the interference plus noise power in (2) with C being the 
covariance of the interference plus noise, i.e. C=E[zHz]. 
 
2.5 The Target Steering Vector s 
 
       The normalized steering vector for the target is given by the expressions 
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where: a) θt is the boresight position of the target which is of 0o for the case displayed in Fig. 1 as well as in the 
simulations; b) fc is the carrier (or operating) frequency; c) tθ  is the normalized θt; d) Tr is the pulse repetition interval 
(PRI); e) fr  is the pulse repetition frequency (PRF); f) vp is the target radial velocity; g) c is the speed of light; h) t

Df  is 
the target Doppler; and i) t

Df  is the normalized Doppler.  
 
2.6 The Interference Plus Noise Covariance C=E[zHz] 
 
            The interference plus noise covariance C is given by the following covariance matrix tapers (CMTs) structure [7]  

                               C = { ( f

cC + b

cC ) O (C RW + C ICM + C CM)}+ {C J O C CM} + C n                                         (12) 

where C n, 
f

cC , b

cC , C J, C RW, C ICM and C CM are covariance matrices of dimension NM x NM and the symbol ‘O’ 
denotes a Hadamard product or element by element multiplication. These covariances correspond to: C n to thermal white 
noise; f

cC to front clutter; b

cC to back clutter; C J to jammer; C RW to range walk; C ICM to internal clutter motion; and C CM 
to channel mismatch. The defining expressions for each of these covariances are given next starting with the front clutter 
covariance f

cC  which in knowledge-aided radar is evaluated making use of prior-knowledge such as SAR imagery (2). 

Note that the back clutter covariance b

cC  will be assumed to offer a negligible contribution to C since we will be 

assuming in our simulations that the back antenna gain constant bK  is of 10-4, i.e. – 40 dBs.  
    
2.6.1 The Front Clutter Covariance f
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where: a) the index i refers to the ith front clutter cell on the front range bin section shown in Fig. 1; b) i
cθ  is the 

boresight angle of the ith clutter cell; c) AAMθ  is the antenna array misalignment angle; d) i x is the ith front clutter source 

cell power; e) tθ  is the target boresight angle; f) )( tig θ  is the antenna gain linked to the ith front clutter cell; g) 

)( AAMi θc  is the front NM x 1 dimensional and complex ith clutter cell steering vector; h) vp is the radar platform speed; 

i) Tr is the PRI; j) fr  is the PRF; k) i
cθ  is the normalized i

cθ ; l) d is the antenna inter-element spacing; m) λ is the 
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operating wavelength; and n) β is the ratio of the distance traversed by the radar platform during the PRI, i.e. vpTr, to the 
half antenna inter-element spacing, d/2. Finally, the first element of the NM by NM matrix f

cC  divided by the noise 
variance is the front clutter to noise ratio given by 
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where 2
nσ  is the variance of the thermal white noise whose value is assumed to be of one in our simulations,  i.e., 2

nσ =1.  
 
 
2.6.2. Thermal White Noise Covariance nC  

                NMnn I2C σ=                                                                          (22) 

where 2
nσ  is the average power of thermal white noise and INM is an identity matrix of dimension NM by NM.  

 
2.6.3. Jammer Covariance JC  
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where: a) the index i refers to the ith jammer on the range bin; b) NJ is the total number of jammers; c) i
Jθ  is the 

boresight angle of the ith jammer ; d) ⊗  is the Kronecker (or tensor) product; e) IM is an identity matrix of dimension M 
by M; f) 1NxN is a unity matrix of dimension N by N; g)  ip is the ith jammer power; and h) )( i

Jθj  is the NM x 1 
dimensional and complex ith jammer steering vector that is noted from (23)-(28) to be Doppler independent. 

The first element of the NM by NM matrix JC  defines the jammer to noise ratio 
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2.6.4. Range Walk Covariance CMT RWC  
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where: a) c is the velocity of light; b) B is the bandwidth of the compressed pulse; c) ΔR is the range-bin radial width; d) 
Δθ is the mainbeam width; e) A is the area of coverage on the range bin associated with Δθ  at the beginning of the range 
walk; f) ΔA is the remnants of area A after the range bin migrates during a CPI; and g) ρ is the fractional part of A that 
remains after the range walk.  
 
2.6.5. Internal Clutter Motion Covariance CMT ICMC  
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 2.63  log 1.12  log 5.15  log10 101010 +−−= cfr ω                                                       (37) 
where: a) fc is the carrier frequency in megahertz; b) ω is the wind speed in miles per hour; c) r is the ratio between the 
dc and ac terms of the clutter Doppler power spectral density; d) b is a shape factor that has been tabulated; e) c is the 
speed of light; and f) Tr is the pulse repetition interval. 
 
 2.6.6. Channel Mismatch Covariance CMT CMC  

ADFBNBCM CCCC  O O  =                                                                   (38) 

where NBC , FBC  and ADC  are composite CMTs that are defined next.    
 
2.6.7. Finite Bandwidth: FBC is a finite (nonzero) bandwidth (FB) channel mismatch CMT   
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where εΔ  and φΔ  denote the peak deviations of decorrelating random amplitude and phase channel mismatch, 
respectively. The square term in (42) corrects an error in the derivation of equation (4.21) in [7].  
 
2.6.8. Angle Dependent: ADC  is a reasonably approximate angle-independent CMT for angle-dependent (AD) channel 
mismatch [7] given by  
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where B is the bandwidth of an ideal bandpass filter and θΔ  is a suitable measure of mainbeam width.  
 
2.6.9. Angle Independent Narrowband: NBC  is an angle-independent narrowband or NB channel mismatch CMT  
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where 1εΔ ,…, NεΔ and 1γΔ ,…, NγΔ denote amplitude and phase errors, respectively.  
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2.7 The Weighing Vector w 
 

The weighting vector w that maximizes the SINR (3) is derived via the use of Schwarz’s inequality which 
yields the Wiener-Hopf equation 

w = C -1s                                                                           (51) 
where C  is the interference plus noise covariance (12) and s is the normalized steering vector of the target.  
 
2.8 The Optimum SINR Performance 
 
    The optimum SINR performance, SINROpt, is derived from the substitution of the weighting vector (51) in (3) to yield 

SINROpt =sH C -1s.                                                                   (52) 
 

 
3. THE SAMPLE COVARIANCE MATRIX INVERSE 

     
 The sample covariance matrix inverse (SCMI) algorithm is stated next. 
 

 The SCMI Weighting Vector wSCMI  
 
  The SCMI counterpart of the optimum SINR Wiener-Hopf weighting vector (51) is as follows 

wSCMI = SCMC -1 s                                                                         (53)  

I
diag

SCM

i

H
ii

SCM

SCM
L

L
2

1

1C σ+∑=
=

ZZ                                                             (54) 

where: a) SCMC denotes the sample covariance matrix (SCM); b)  σ2
diagI is a diagonal loading term where σ2

diag =10 is 
used in our simulations to address numerical problems linked with the SCMC inversion: and c)  {Zi , i=1,..,LSCM} denotes 
LSCM samples from LRB range-bins. Thus 

RBScanSCM LLL =                                                                        (55) 
where LScan represents the number of scans of LRB range-bins. In our simulations we will use LSCM =256 where the 
number of range bins LRB  is 64 range-bins for a 1024 by 256 SAR image to be discussed in Section 6 and the number of 
scans LScan of this image will be 4.    
 
3.2 The Simulation Scheme 
 
    To derive the set of range-bin measurements {Zi , i=1,..,LSCM} the following simulation algorithm will be used 

iii nZ 2/1C=                                                                             (56) 
where ni is a zero mean, unity variance, NM dimensional complex random draw and Ci is the interference plus noise 
covariance (12) associated with the ith range-bin. All the radar and environmental conditions that are used to evaluate 
expression (12) for each range-bin are summarized in Table 1, inclusive of jammer assumptions. 
 

 
4. THE KNOWLEDGE-AIDED POWER-CENTROID ALGORITHM 

 
In this section the knowledge-aided power-centroid (KAPC) algorithm is stated which derives the prerequisite range-bin 
power-centroid from the stored SAR imagery. 
 
4.1 The Knowledge-Aided Power-Centroid (KAPC) Algorithm 
 
             The knowledge-aided power-centroid (KAPC) algorithm is given by the following weighting vector expressions 
 

wKAPC = [KAPCC]-1s                                                                    (57)     

                              KAPCC = { ( f

CCKAPC + b

CC ) O (C RW + C ICM + C CM)}+ {C J O C CM} + C n                             (58) 
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where the covariances b
cC , CRW, CICM, C CM, CJ, and Cn are the same as those for the interference plus noise covariance 

C given by expression (12), and f

CCKAPC predicts f

CC  of (12). 
 

4.1.1 The KAPC Predicted Front Clutter Cell Covariance f

CCKAPC   

     The defining expressions for f

CCKAPC are given by  
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element product of the power emitted by the investigated range-bin ]   ....    [ 21 CNxxx=x  and the front antenna gain 

]   ....    [ 21 CNggg=g ;  c) )O( gxC is the power-centroid which can be any real number from 1 to NC;  d) )O( gxC
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power-centroid boresight angle in radians; and e) )(g )O( gxC
Ci θ  is an appropriately normalized antenna pattern version of 

(1) that is shifted to the power-centroid and serves as a compensating antenna pattern (CAP) for the lack of either partial 
or total prior knowledge about the clutter. 
 
4.1.2 The Compensating Antenna Pattern  )(g )O( gxC

Ci θ  

        The CAP predicts the clutter-antenna-gain product set }N1,...,i:)(g{ C=tii θx of f

CC  (13) and is defined by 
the following antenna pattern expression 
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C
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C =KAPC                                                                     (64) 
where K is a normalizing gain that results in the matching of the average clutter power of the front clutter covariance 

f

CC and its prediction f

CCKAPC . This scheme which is generally suboptimum since it only approximates the true 

expression for f

CC will be found in our simulations to be approximately 1 dB away from the optimum Wiener-Hopf 
algorithm due to its evaluation of the clutter power-centroid from the true clutter (60) which is available as prior 
knowledge. However, it must also be noted that earlier in [3]-[4] it had been shown that this scheme also produces 
outstanding results when the power-centroid of (60) is derived using a SAR image that is a reconstructed version of an 
original SAR image that is highly lossy compressed.  
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5. THE KNOWLEDGE-UNAIDED POWER-CENTROID ALGORITHMS 
 

Two power-centroid schemes that do not use clutter prior-knowledge are stated next. The first is a knowledge-unaided 
power-centroid (KUPC) algorithm that evaluates the power-centroid from the same on-line range-bin measurements {Zi , 
i=1,..,LSCM} that are used to construct the SCMI algorithm. This KUPC scheme requires a predicted clutter covariance 
(PCC) matrix to be derived on-line and has at its disposal full or partial knowledge of other radar interferences and noise 
covariances. The second scheme is a fast KUPC (F-KUPC) algorithm that quantizes the power-centroid derived from {Zi 
, i=1,..,LSCM}. The quantized power-centroid is then used to extract from a memory a PCC that had been previously 
designed off-line using a CAP directed towards the quantized power-centroid. 
 
5.1 The Knowledge-Unaided Power-Centroid (KUPC) Algorithm 
 
          The KUPC algorithm is given by the following weighting vector expressions 

 wKUPC = [KUPCC]-1s                                                                       (65)     

                              KUPC C = { ( f

CCKUPC + b

CC ) O (C RW + C ICM + C CM)}+ {C J O C CM} + C n                               (66) 
where the covariances b

cC , CRW, CICM, C CM, CJ, and Cn are the same as those for the interference plus noise covariance 

C given by expression (12) and are either assumed to be zero or known, and f

CCKUPC predicts the front clutter cell 

covariance for f

CC  in (12).  

5.1.1 The KUPC Predicted Front Clutter Cell Covariance f

CCKUPC   

          The defining expressions for f

CCKUPC are given by  
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1)1,1(f

C mKUPC =C                                                                        (73) 

where: a) )( AAMi θc  is as defined for f

CC (13); b) C is the estimated power-centroid of the range-bin using the sample 
covariance matrix in (54), and inclusive of any type of disturbance and noise; c) M is a real scalar quantity which is a 
function of an appropriately determined set of constants {ki}, the real power of the on-line derived measurements {Zi} or 
m1, and the imaginary part or Imag[.] of each element of a set of N+M-2 distinct and complex correlations {mi} selected 
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from the first row of the NM x NM dimensional sample covariance matrix (SCM) in (54), e.g. when M=N=2 the three 
correlation elements {mi: i=1,2,3} are the first, second, and fourth elements of the SCM’s first row as seen below 
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and when M=N=3 the five correlation elements {mi: i=1,2,3,4,5} are as seen below 
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and so on for higher dimensions; and d) C
Cθ is the boresight angle in radians associated with C ; and d) the values of the 

constant gains {ki } used in our simulations are found from the following expression 

( ) 2i 2
11 −−−= i

iKk M                                                                         (76) 

where the value of MK  is 60.  
 
5.1.2 Justification for KUPC expressions (68), (69) and (76) 
  
     The basic idea behind the power-centroid expressions of (68), (69) and (76) is explained next using the 
optimum M=N=2 case depicted in Fig. 2 for β = 1 as motivation. This figure shows a clutter range-bin made of NC=4 
clutter cells which are symmetrically spaced with respect to the target that is being investigated at the boresight angle of 
θt =0o. Thus we have that the four clutter cell locations { θ1, θ2, θ3, θ4} send to the two elements of the receiving antenna 
the clutter-antenna-gain modulated steering expressions { }444333222111 ,,, vvvv gxgxgxgx , respectively. 
Furthermore, the two antenna elements in this example produce during a CPI two different measurements. All of these 
measurements are represented in Fig. 3 with the matrix  
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Fig. 2  Space-Time Geometry For An Optimum Power- Centroid Algorithm Example 
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where the left element of each (si,tj) pair, i.e. si, indicates the ith antenna element and the right element tj denotes the jth 
received pulse during a CPI, while the four measurement values depicted on the matrix, i.e. {z(si,tj)}, are a function of 
the received modulated steering vectors as shown below  
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with the four clutter steering vectors given by the expression 
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Next an expression is found for the correlation matrix E[xxH] under the assumption that each clutter return is 
uncorrelated from each other, i.e. it is assumed that j igxgxE jjii ≠= for   0][  and iijjii gxgxgxE =][  for i=j. 

Thus it is found via straight forward algebraic manipulations and the symmetry condition θ3 =-θ2 =22.5o and θ4 =-
θ1 =67.5o deduced from Fig. 3 that  
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where the three correlation elements in (81) are found from the following three expressions 
443322111 gxgxgxgxm +++=                                                                  (82) 
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Next the moment expressions (82)-(84) are related to the desired evaluation of C(xOg) (60) for the clutter range-bin of 
Fig. 2 which is for this case as follows: 
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An algebraic manipulation of this expression then yields 
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where the denominator of (85) now appears as m1 (82) in (86) and the first term to the right of (86) is given by 2.5 which 
is the assumed boresight position of the target of 0o as well as the position of the power-centroid when either a 
symmetrical condition for the clutter, i.e. x3g3=x2g2 and x4g4=x1g1 exits or the clutter difference closest to the target, i.e. 
x3g3-x2g2, is equal to the negative of three times the clutter difference away form the target, i.e. -3(x4g4-x1g1). We next 
use expressions (82)-(84) to derive the following relationships between the real and imaginary parts of m2 and m3 
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Solving the linear system of equations (88) for the clutter differences vector under the constraint that the matrix must be 
invertible, and then substituting this result in (86) yields the desired optimum expression for the range-bin power-
centroid C(xOg) in term of the three correlation elements of ][ HE xx , i.e. m1, m2 and m3, as follows 

Proc. of SPIE Vol. 7351  73510U-11



 

 

[ ]
⎥
⎦

⎤
⎢
⎣

⎡

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

⎟
⎠
⎞

⎜
⎝
⎛

⎟
⎠
⎞

⎜
⎝
⎛

⎟
⎠
⎞

⎜
⎝
⎛

⎟
⎠
⎞

⎜
⎝
⎛

−
+

=

−

][Imag
][Imag

sin4sinsin4sin

sin2sinsin2sin

2
31

2
14)(

3

2

1

43

43

1 m
m

dd

dd

m
C

θ
λ
πθ

λ
π

θ
λ
πθ

λ
π

xOg                            (89) 

To get an idea of the values derived for this simple and optimum case we evaluate (89) for the assumed symmetrical 
conditions of Fig. 2 and under the assumption that d/λ=0.5 (also used in our simulations) to yield 
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This expression can then be rewritten as follows  
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where a comparison of expressions (68), (69) and (76) with (91) should help explain why the forms for expressions (68), 
(69) and (76) are being used for the real-world radar problem simulated in this paper. It should also be emphasized that 
the selected simulation values of N=16, M=16 and NC=256 do not allow us to generalize (89) to include this case. 
Moreover even if this was possible it is likely that numerical stability problems will surface when dealing with the 
inversion of high dimensionality matrices. This is why the simple and well behaved expressions (68), (69) and (76) are 
used by us. 
 
5.2 The Fast Knowledge-Unaided Power-Centroid Algorithm 
 
              The fast KUPC or F-KUPC algorithm is characterized by the following weighting vector expressions 

 wF-KUPC = [F-KUPCC]-1s                                                                    (92)     
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cC , CRW, CICM, C CM, CJ, and Cn are the same as those for the interference plus noise covariance 

C given by expression (12), and f

CCKUPCF−  predicts the front clutter cell covariance for f

CC  in (12).  

     The defining expressions for f
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(69) and (76) are now quantized. Thus  
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with L denoting the finite number of CAPs that may be used in (94) to predict the f

CC , andC is the unquantized 
centroid of (68). Clearly this algorithm lends itself to an extremely fast implementation where sets of L predicted clutter 
covariances (PCCs) are designed off-line for as many antenna array misalignment angles {θAAM } as desired. In our 
simulations, that we discuss next, we will consider two cases for L (or equivalently the number of CAPs). These cases 
are L=3 and L=11 where in addition N=M=16 and NC=256, and LSCM =256. 

Proc. of SPIE Vol. 7351  73510U-12



 

 

256 Cells of Each 'Simulated' Range-Bin

64
 R

an
ge

-B
in

s

50 100 150 200 250

10

20

30

40

50

60 -30

-20

-10

0

10

20

dB
1,800 Meters Horizontal Range

dB

1,
50

0 
M

et
er

s V
er

tic
al

 R
an

ge

100

200

300

400

500

600

700

800

900

1000

50 100 150 200 250

-30

-20

-10

0

10

20

-40

(a) (b)

256 Cells of Each 'Simulated' Range-Bin

64
 R

an
ge

-B
in

s

50 100 150 200 250

10

20

30

40

50

60 -30

-20

-10

0

10

20

dB
1,800 Meters Horizontal Range

dB

1,
50

0 
M

et
er

s V
er

tic
al

 R
an

ge

100

200

300

400

500

600

700

800

900

1000

50 100 150 200 250

-30

-20

-10

0

10

20

-40

256 Cells of Each 'Simulated' Range-Bin

64
 R

an
ge

-B
in

s

50 100 150 200 250

10

20

30

40

50

60 -30

-20

-10

0

10

20

dB
1,800 Meters Horizontal Range

dB

1,
50

0 
M

et
er

s V
er

tic
al

 R
an

ge

100

200

300

400

500

600

700

800

900

1000

50 100 150 200 250

-30

-20

-10

0

10

20

-40

(a) (b)

 
Fig. 3 Synthetic Aperture Radar (SAR) Image of Mojave Airport in California 

 
 

6. SIMULATION RESULTS 
 
In this section several simulations results are presented that use the 64 by 256 SAR image seen in Fig. 3. The original 4 
megabytes SAR image of Fig. 3a is made up of 1,024 by 256 pixel elements representing 1,800 by 1,500 meters of the 
Mojave Airport in California where each pixel denotes clutter power. Sixteen consecutive rows of Fig. 3a are then 
averaged to form the 64 x 256 image of Fig. 3b. In our simulation each row of Fig. 3b is a range-bin with 256 clutter 
cells for each. In addition, the simulation radar parameters, disturbance and noise values used are those of Table 1.  
The SAR image of Fig. 3 as well as the matlab program used in our simulations will become available in the author’s 
Web site [8] in the near future. 
 
           The results are summarized in four figures, i.e. Figs. 4-7. The basic difference between the four figure cases is in 
the use of jammers and the number of CAPs used. Figs. 4-5 present cases where three jammers are used at boresight 
angles of -60o, -30 o and 45 o with corresponding JNR values of 52, 55, and 66 dBs, respectively, while Figs. 6-7 show 
simulation results with no jammers used. On the other hand, Figs. 4 and 6 present results for eleven CAPs and Figs. 5 
and 7 for three CAPs. Each figure case has seven displays. First Figs. 4a, 5a, 6a and 7a show the SINR error in dBs as a 
function of range-bin where note is made of the average SINR error over all range-bins for the three cases which are the 
SCMI scheme of (53)-(56), the KAPC scheme of (57)-(64), and the F-KUPC scheme of (92)-(98). For example, in Fig. 
4a KAPC is noted to yield an average SINR error of 0.87 dBs, F-KUPC of 1.32 dBs, and SCMI of 7.59 dBs. These 
results are satisfactory since more than 6 dBs improvements are derived over the SCMI with both the KAPC and F-
KUPC schemes, while also yielding in both cases an average SINR radar performance close to the optimum SINR radar 
performance. In Figs. 4b-7b the power of the KAPC and F-KUPC schemes, i.e. (64) and (98), respectively, is depicted 
where the fluctuations from range-bin to range-bin found with the F-KUPC case reflects its derivation from the average 
power m1 that is derived from the use of the sample covariance matrix (54) without the use of the loading factor of 
course. In Figs. 4c-7c the range-bin power-centroids corresponding to the KAPC algorithm (60), the KUPC algorithm 
without centroid quantizations (68), and the F-KUPC algorithm with centroid quantizations (95) are shown. Figs. 4d-g, 
5d-g, 6d-g and 7d-g specifically display the radar system performance for range-bin number one. In Figs. 4d-7d the 
actual range-bin clutter, KAPC predicted clutter power {(59),(63),(64)} and F-KUPC predicted clutter power 
{(94),(97),(98)} is displayed as a function of clutter cell number. In Fig. 4e-7e the optimum, KAPC, F-KUPC and SCMI 
SINRs are displayed as a function of normalized Doppler. In Fig. 4f-7f the optimum, KAPC, F-KUPC and SCMI 
adapted patterns [7] are shown as a function of clutter cell number. Finally in Fig. 4g-7g the optimum, KAPC, F-KUPC 
and SCMI interference plus noise covariance eigenvalues [7] are plotted for each case.  
 
        The results presented in Figs. 4-7 are typical results for the compared schemes as researchers should be able to 
confirm using their own matlab simulations or those that will become available in [8]. It is thus concluded that F-KUPC 
radar offers a major improvement over KAPC radar. This result also brings further support to the mathematical 
uncertainty-information/certainty-latency duality that has resulted in both KAPC and F-KUPC radar. In the second part 
of this two parts paper series the recently discovered [3] physical dual for our mathematical uncertainty-
information/certainty-latency duality is presented in some detail and illustrated with simple physical examples in a more 
general unification setting. 
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Fig. 4. Eleven (11) CAPs with Jammers at -60o, -30o and 45o with 52, 55, and 66 JNRs in dBs, respectively. (a) SINR 
Error. (b) Range-Bin Power of Clutter Plus Jammer. (c) Range-Bin Centroid of Clutter Plus Jammer. (d) Range-Bin #1 
Clutter and its Predictions. (e) Range-Bin #1 SINRs. (f) Range-Bin #1 Adapted Patterns. (g) Range-Bin #1 Eigenvalues  
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Fig. 5. Three (3) CAPs with Jammers at -60o, -30o and 45o with 52, 55, and 66 JNRs in dBs, respectively. (a) SINR 
Error. (b) Range-Bin Power of Clutter Plus Jammer. (c) Range-Bin Centroid of Clutter Plus Jammer. (d) Range-Bin #1 
Clutter and its Predictions. (e) Range-Bin #1 SINRs. (f) Range-Bin #1 Adapted Patterns. (g) Range-Bin #1 Eigenvalues  
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Fig. 6. Eleven (11) CAPs with no Jammers. (a) SINR Error. (b) Range-Bins Powers of Clutter Plus Jammer. (c) Range-
Bins Centroids with Clutter Plus Jammer. (d) Range-Bin #1 Clutter and its Predictions. (e) Range-Bin #1 SINRs. (f) 
Range-Bin #1 Adapted Patterns. (g) Range-Bin #1 Eigenvalues  
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Fig. 7. Three (3) CAPs with no Jammers. (a) SINR Error. (b) Range-Bins Powers of Clutter Plus Jammer. (c) Range-
Bins Centroids with Clutter Plus Jammer. (d) Range-Bin #1 Clutter and its Predictions. (e) Range-Bin #1 SINRs. (f) 
Range-Bin #1 Adapted Patterns. (g) Range-Bin #1 Eigenvalues 
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Table 1. Radar Simulation Parameters 
 

a. Antenna N=16,    M =16,    d/λ=½,   2
nσ = 1 

Front antenna gain constant, (1): K f  = 56 dBs 
Back antenna gain constant : K b = -40 dBs  
Carrier frequency, (9):  fc  = 109  Hz  
Pulse repetition frequency, (10): fr  = 103  Hz  
Antenna array misalignment, (13): AAMθ = 2o 

b. Clutter Nc = 256 
Radar’s ratio β , (19): β  = 1 

c. Jammers Jammers were used at -60o, -30o and 45o with 52, 55 and 66 
JNRs in dBs, respectively, inclusive of antenna gains. 

d. Range Walk  Fraction of remaining area after range walk, (33): 
ρ=0.999999. 

e. Internal Clutter 
Motion 

Shape factor, (35):  b = 5.7 
Wind-speed, (37): 15=ω  mph 

f. Channel Mismatch: 
Narrowband 

      

Amplitude error,  (50): iεΔ = 0 for all i,   
Phase-error, (50): iγΔ fluctuates with a 5o rms for all i 

h. Channel Mismatch: 
Finite-Bandwidth 

Amplitude peak deviation, (41): εΔ = 0.001,  
Phase peak deviation, (41): φΔ = 0.1o 

i. Channel Mismatch : 
Angle-Dependent 

Bandwidth, (45):  B = 108 Hz  
Mainbeam width, (45): θΔ = 28.6o 
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