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Abstract—Knowledge unaided power centroid (KUPC) adaptive radar and its latency information theory (LIT) roots 
are reviewed in this third paper of a three paper series. LIT is the universal guidance theory for efficient system designs 
that has inherently surfaced from the confluence of five ideas. They are: 1) The source entropy and channel capacity 
performance bounds of Shannon’s mathematical theory of communication; 2) The latency time (LT) certainty of 
Einstein’s relativity theory; 3) The information space (IS) uncertainty of Heisenberg’s quantum physics; 4) The black 
hole Hawking radiation and its Boltzmann thermodynamics entropy S in SI J/K;  and 5) The author’s 1978 conjecture of 
a structural-physical LT-certainty/IS-uncertainty duality for stochastic control. LIT is characterized by a four quadrants 
revolution. While the first and third quadrants are concerned with the life time of physical signal movers and the life 
space of physical signal retainers, respectively, the second and fourth quadrants are about the intelligence space of 
mathematical signal sources and the processing time of mathematical signal processors, respectively. The four quadrants 
of LIT are assumed to be physically independent with their system design methodologies guided by dualities and 
performance bounds. Moreover, all the LIT quadrants are bridged by statistical physics, inclusive of a recently 
discovered time dual for thermodynamics that has been named lingerdynamics. The theoretical and practical relevance 
of LIT has already been demonstrated using real-world control, physics, biochemistry and the KUPC adaptive radar 
application that is reviewed in this paper. KUPC adaptive radar is a technique that falls within the fourth quadrant of 
LIT, and is thus a mathematical signal processing technique whose goal is the efficient detection of moving targets in 
real-world taxing environments. As is highlighted in this review KUPC adaptive radar is found to come relatively close 
to the signal to interference plus noise ratio (SINR) radar performance of DARPA’s knowledge-aided sensory signal 
processing expert reasoning (KASSPER) even though it is knowledge unaided.  
 
Index Terms—Latency-certainty, information-uncertainty, mathematical-intelligence, physical-life, adaptive radar, knowledge 
unaided, DARPA, KASSPER, signal processor, structural-physical latency-certainty/information-uncertainty duality 
 

1. Introduction 
 

This paper succinctly reviews the origins of the powerful and fast knowledge-unaided power-centroid (KUPC) 
adaptive radar scheme [1]. This scheme systematically arose as an application of the nascent latency information theory 
(LIT) system design guidance philosophy of [2]-[4] to the derivation of a simple alternative to the 2001-2005 DARPA’s 
knowledge-aided sensory signal processing expert reasoning (KASSPER) program [5]. In Section 2 the chronological 
development of LIT is documented up to the development of KUPC adaptive radar. In Section 3 the airborne moving 
target indicator (AMTI) adaptive radar problem is stated whose solution the KUPC adaptive radar algorithm efficiently 
addresses without the need for prior knowledge. In the last section the signal to interference plus noise ratio (SINR) 
radar performance of three alternative adaptive radar techniques are contrasted with that of KUPC adaptive radar. 

  
2. The Latency Information Theory Roots of KUPC Adaptive Radar 

 
LIT consists of a four quadrants revolution whose chronological development is documented next. The discussion 

starts with the statement of the two lossless efficiency performance bounds of the mathematical theory of 
communication [6] which is part of information theory. Since the units of communicated source information are 
mathematical bits, classical information theory is referred in LIT as mathematical information theory (or MIT), where  
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Fig. 1.  The Structural-Physical LT-Certainty/IS-Uncertainty Dualities of the LIT Revolution. 

MIT is in quadrant II. In this way MIT can be contrasted with the nascent physical information theory (PIT) of  quadrant 
III where the units of the observed physical retainer information are SI square meters. The same kind of contrast can be 
made between ‘the mathematical theory of communication’ of Shannon and ‘the physical theory of observation’ of 
quadrant III that guides the efficient use of life space in SI m2 units by physical signal retainers via two lossless 
performance bounds. However in this paper PIT is not used since it is unrelated to the KUPC adaptive radar algorithm.  
Moreover, for similar reasons, the physical latency theory (PLT) which is in quadrant I of LIT and uses ‘the physical 
theory of communications’ to guide the efficient use of life time in SI secs units by physical signal movers [2]-[4] is not 
treated here. Next in chronological order the assumed structural-physical latency time (LT) certainty/information space 
(IS) uncertainty duality of 1978 by the author for stochastic control will be reviewed. This assumption was the catalyst to 
the search and discovery of a time dual for MIT that had similar structural-physical properties. This time dual was called 
mathematical latency theory (MLT), appearing in quadrant IV of LIT, which was concerned with the efficient use of 
processing time in binary operator (bor) units by signal processors via ‘the mathematical theory of observation’ also 
using two lossless performance bounds. Next the 2004-2005 University Grant from DARPA’s KASSPER program [7] is 
discussed that motivated the discovery of MLT and as mentioned earlier led to the development of KUPC adaptive 
radar. Finally, the performance bounds and structural-properties of MLT are briefly discussed for ease of reference. 

A. The Two Performance Bounds of The Mathematical Theory of Communication of LIT’s MIT 
 The first lower performance bound of MIT is used to guide the design of source-coders and is denoted as the 

source-entropy with symbol H in bit units [6] for the sourced intelligence space (or intel-space in short) quantity that it 
represents. More specifically H is defined as the expected source-information 

unitsbit in   )()()]([
1∑Ω

=
==

i iSiSiS gIgPgIEH                                                               (1) 

))(/1(log)( 2 iSiS gPgI =                                                                            (2) 

where: 1) G ∈{g1,..,gΩ} is a n-dimensional random vector composed of Ω vector outcomes {g1,..,gΩ}; 2) IS(gi) is the gi 
source-information in bit units; 3) PS(gi) is the gi source-probability; and 4) H=log2Ω is the maximum possible source-
entropy that occurs when the outcomes are equally likely.  

The second and upper MIT performance-bound is used to guide the design of the channel and source integrated 
(CSI) coder shown in quadrant II of the LIT revolution of Fig. 1. While the source-coder of the CSI-coder efficiently 
compresses intel-space, its channel-coder efficiently uses overhead intel-space for the time-communication of intel-
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Fig. 2.  The LIT revolution display of IS-uncertainty detection and LT-certainty quantized control. 
 
space through a noisy intel-space channel. The CSI-coder’s performance bound is called channel-capacity with symbol 
C and denotes the maximum percentage of intel-space extracted without loss from a noisy intel-space channel. C is thus 
defined as 

1])([ max)(0
]}[{

≤==≤ EFEE HHHHHHC // /EF/EE --
iS eP

                                                          (3)    

where E is the input and F is the output of the channel corresponding to the n-dimensional codewords E and F with a 
source-probability distribution {PS[ei]} that maximizes the mutual source-information EFEE HHH // )( -  (e.g., for a 
memoryless symmetric channel {PS[ei]} is uniformly distributed, i.e., PS[e1]=PS[e2]=1/2). In particular, HE/F can be 
viewed as a channel-induced intel-space penalty whose value determines the percentage of the intel-space specified by 
HE that can be time-communicated without loss (or equivalently its probability of error approaches zero).  
 

B. The Structural-Physical LT-Certainty/IS-Uncertainty Duality Conjecture 
The structural-physical LT-certainty/IS-uncertainty duality conjecture of 1978 gave rise to the mathematically 

tractable separation of stochastic quantized control designs into a LT-certainty processor-state control evaluator design 
and an IS-uncertainty processor-state estimator design [8]. In particular, this approach resulted in a Matched Processors 
methodology for quantized control [9] which was derived as the LT-certainty dual of the IS-uncertainty Matched Filters 
methodology [10] for the detection of transmitted bits through a noisy intel-space channel. More specifically, given 
observations of the present state of the controlled signal-processor (modeled with deterministic state equations), matched 
processors evaluated for a small set of present and future quantized controls the cost to go for each control sequence. 
From these matched processor evaluations the present control was then found that yielded the best cost to go for a 
suitable horizon, and its value applied to the controlled signal-processor. The approach was repeated as many times as 
there were control steps. It is of interest to note that besides Matched Processors being rather straight forward, it also has 
the fundamental advantage of not suffering from ‘the curse of dimensionality’ of the alternative control methodology, 
i.e., Bellman’s Dynamic-Programming [11] since the number of required matched processors for practical applications 
can be very small [8]. In Fig. 2 the Matched Processors control structure for the control of a signal processor (or plant) is 
shown on the LT-certainty/LT-observation quadrant IV of the LIT revolution, while its structural dual, i.e. the Matched 
Filters detector structure for the detection of bits [10], is shown on the IS-uncertainty/IS-communication quadrant II. 
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C.  The DARPA University Grant 
The merging of MIT with the structural-physical LT-certainty/IS-uncertainty duality of Fig. 2 to yield mathematical 

latency theory (or MLT) was motivated by a university grant from DARPA [7]. The objective of this research was to use 
minimum mean square error predictive-transform (MMSE-PT) source coding [12] for the lossy compression of synthetic 
aperture radar (SAR) imagery of the earth, later to be used in a knowledge-aided adaptive radar [13] system subjected to 
severely taxing environmental disturbances. This problem turned out to be extremely difficult to address since in 
addition to the compression of the SAR imagery, the processing time of the associated adaptive airborne moving target 
indicator (AMTI) radar ‘lossless’ signal-processor also needed to be radically compressed. Moreover, it was also found 
that regardless of how fast a lossless signal-processor was, it could never be suitably matched to its input when it 
consisted of compressed SAR imagery that was both radar-blind and highly-lossy. This lack of match between the 
lossless signal-processor and its compressed input, results in an unsatisfactory signal to interference plus noise ratio 
(SINR) radar performance. Fortunately, however, this problem was then solved by once again invoking the Matched 
Processors structural-physical LT-certainty/IS-uncertainty duality conjecture of Fig. 2. In this latest revelation while the 
compression of intel-space is an IS-uncertainty/IS-communication problem, the compression of intel-time is a LT-
certainty/LT-observation one. Moreover and just as importantly, since the LT-certainty Matched Processors 
methodology was structurally similar to that of the IS-uncertainty Matched Filters methodology, it was felt that the IS-
uncertainty/IS-communication MIT system design methodology of quadrant II must also have a ‘LT-certainty signal-
processor design methodology’ with dual strategies. In this way MLT inherently surfaced as the LT-certainty/LT-
observation dual of IS-uncertainty/IS-communication MIT. Of all the inherited MLT strategies the most compelling one 
was the appearance of ‘lossy’ processor-coders. After this property was identified it was then applied to the design of a 
suitably lossy adaptive AMTI radar signal-processor. More specifically, the clutter covariance evaluator whose input 
was the stored SAR imagery was replaced with a lossy power-centroid clutter processor. This highly lossy clutter 
covariance evaluator first determined from the stored SAR imagery the power and power-centroid values of the 
investigated clutter range-bin. Using these values, it then extracted a suitable clutter covariance from a small set, earlier 
designed off-line and stored in memory. After this approach was tried it was found that besides being extremely fast, the 
processor resulted in outstanding SINR radar performances while using stored SAR imagery that was both radar-blind 
and exceedingly lossy. The lossy SAR imagery resulted from the compression of the lossless SAR imagery by a factor of 
8,172. Moreover, an even more surprising result later surfaced [1]. It was that a lossy adaptive AMTI radar signal-
processor algorithm can be designed that emulates the outstanding SINR radar performance of the former scheme 
without the need of clutter prior-knowledge, i.e., SAR imagery. This highly desirable result surfaced from the discovery 
that both the range-bin power and its power-centroid can be readily derived from the on-line sample covariance matrix.  
 

D.  The Two Performance Bounds of The Mathematical Theory of Observation of LIT’s MLT 
Similarly to the mathematical theory of communication of MIT, the mathematical theory of observation of MLT has 

two performance bounds that guide system designs. The first is the lower performance bound for processor-coder 
designs, which is called processor-ectropy with symbol K and values given in binary operator (bor) units for the 
processing intelligence time (or intel-time for short) levels that it represents. A processor-coder is any replacement of the 
original signal-processor whose output is said to be lossless when it matches that of the original signal-processor and 
lossy when it does not. More specifically K is a minimax criterion that is illustrated next with a simple example. This 
example is of a 1-bit full-adder [14] original signal-processor that has a slow bor multi-level implementation structure 
where the sum output is associated with six bor levels and the carry-out with five bor levels. The reason for this 
relatively large number of bor levels is that this full-adder only uses two-input gates. However, for this example it is 
found that K =3 bors since the minimum number of bor levels needed to generate the carry bit is two, and for the sum bit 
is three as is noted to be the case when a ‘sum of minterms’ implementation methodology is used [14] and more than 
two-input gates are allowed. While the 1-bit full adder is a lossless processor-coder, a lossy but faster, by one bor level, 
1-bit full adder can be readily derived from the lossless case by only implementing the two bor levels for the carry out 
and by setting the sum output to zero. K is thus defined as 

    )]]([)],..,([max[)](),..,(max[ 111 NPNPNPP gCfgCfgLgL ==K                                                (4) 
where: a) g=[g1,..gN] is the N-dimensional signal-processor vector output; b) LP(gi) is the gi processor-latency, e.g. 
LP(sum)=3 bors for the full-adder; and c) fi[CP(gi)]=LP(gi) conveys LP(gi) dependence on the gi processor-constraint 
CP(gi). 
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The second and upper MLT performance bound is used to guide the design of the sensor and processor integrated 
(SPI) coder shown in quadrant IV of the LIT revolution of Fig. 1. While the SPI-coder’s processor-coder efficiently 
compresses intel-time, its sensor-coder efficiently uses overhead intel-time for the space-observation of intel-time across 
a window-limited intel-time sensor. The SPI-coder’s performance bound is called sensor-consciousness with symbol F 
and denotes the maximum percentage of the mathematical latency extracted without loss from a window-limited intel-
time sensor. Thus F is defined by 

1])([ max)(0 /
]}[{

≤==≤ efee KKKKKKF // ef/ee --
iP eC

                                                (5)    

where e is the input and f is the output of the sensor corresponding to the n-dimensional vectors e and f with processor- 
constraints {CP[ei]} that maximize the mutual processor latency 

efee KKK /- )( /
 (e.g., for the full adder case the 

processor constraints {CP[ei]} that maximize the mutual processor latency is when the sum output and carry-out can be 
derived using logic gates with an arbitrary number of inputs). In particular, Ke/f is a sensor-induced intel-time penalty 
whose value determines the percentage of the intel-time specified by Ke that can be space-observed without loss. In Fig. 
2d the SPI-coder is displayed whose design is guided by F. As an illustration of how (5) can be used in SPI-coder 
designs consider a 1-bit full-adder based recursive adder of two bytes. This recursive adder has a processor-ectropy of 16 
bors, i.e., Ke=16 bors, since the processor-latency of the 1-bit full-adder carry-out is of 2 bors and 8 bit pairs (plus the 
associated carry-in) are being added. Then if one observes the adder output with a 14-bors window-limited intel-time 
sensor, the sensor-induced inter-time penalty will be of 2 bor, i.e. Ke/f =2 bors. In turn, this results in a sensor-
consciousness value of F=(16-2)/16=0.88 that informs us that only 88% of the 16 bors intel-time of Ke can be space-
observed without loss. Thus the adder intel-time latency must be of at least 18 bors. The additional 2 bors that are 
required to observe the full sum can then be facilitated by a sensor-coder that uses prior-knowledge, e.g. that LSBs can 
be zero, which allows the addition to start 2 bors earlier in time. 

 
3.   The Airborne Moving Target Indicator (AMTI) Adaptive Radar System 

 
In this section the airborne moving target indicator (AMTI) adaptive radar problem is discussed and its 

mathematical modeling is reviewed. The discussion starts with Fig. 3 where an airborne Boeing 767 is shown together 
with a typical 4 Megabytes SAR image of the Mojave Airport in California. The 767 is assumed to carry an AMTI 
adaptive radar system whose task is to investigate the location at the clutter range-bin boresight angle θC of 0o that is 
miles away to determine if a moving target appears there. On the other hand, the SAR image represents clutter prior 
knowledge that is made available to the radar system to facilitate its detection of targets.  
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Fig. 3. Airborne Moving Target Indicator (AMTI) Adaptive Radar With SAR Image Knowledge Aid. 
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Fig. 4. An Overview of the Radar System Mathematical Model. 
 
Next in Fig. 4 a mathematical idealization of the AMTI adaptive radar problem is presented where all the technical 

details are found in [1]:  
 

• The AMTI system receives as an input the pulse returns from the range bin via an array of N antenna elements 
that also send M pulses towards the range bin during a coherent pulse interval (CPI). The antenna pattern 
associated with the pulse transmissions is also shown in the figure where the front mainlobe/sidelobes are 
significantly more powerful than the back ones. In the simulation results to be discussed later it was assumed 
that: 1) the value of N is 16; 2) the value of M is 16; 3) the constant front antenna gain is of 56 dBs; and 4) the 
constant back antenna gain is of -40 dBs [1].  

• The front range bin is assumed to consist of NC =256 clutter cells. 
• The target signal return is assumed normalized and given by its steering vector s which is a complex 256-

dimensional vector. 
• The signal return x is a complex 256-dimensional vector that results from the addition of all the signal 

interferences and antenna thermal noise. 
• The assumed types of interferences appearing in the AMTI input x are: 1) clutter; 2) jammer; 3) range walk; 4) 

internal clutter motion; 5) channel mismatch; and 6) antenna array misalignment. 
• The total input to the AMTI is given by the addition of x and s.  
• The AMTI performs the inner product multiplication of a complex 256-dimensional weighting vector w and its 

total input to yield the complex scalar output y=wH(x+s)= wHx+wHs where: 1) the exponent ‘H’ denotes a 
complex transpose and conjugation; 2) the term wHx is the interference plus noise component of y; and 3) the 
term wHs is denoted as the signal component of y. 

• A high performance adaptive algorithm must be found that modifies the weighting vector w as the interference 
characteristics change. To address this problem the signal to interference plus noise ratio (SINR) performance 
criterion  

      wwww xx
HHH RSINR /ss=                                                             (6) 

is maximized with respect to w where Rxx is the interference plus noise covariance 
][ xxH

xx ER = .                                                                      (7) 
The result of this maximization yields  

( ) sswwwwww
w

11/ssmax −− === xx
H

Optxx
H
Optxx

HHH
Opt RRRSINR                                      (8) 

where the optimum weighing vector wOpt is given by the Wiener-Hopf equation 
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sw 1−= xxOpt R .                                                                       (9) 
This result in turn tell us that to achieve the best possible SINR adaptive radar performance our efforts should be 

concentrated in the on-line derivation of the interference plus noise covariance Rxx. In the next section four algorithms 
that determine Rxx adaptively, inclusive of KUPC adaptive radar, are reviewed.  

  
4.   A Comparative Study 

 
Next four adaptive radar schemes are compared. The first is the knowledge-unaided sample covariance matrix 

inverse (SCMI) algorithm [1] that is characterized by its simplicity but yields a poor SINR radar performance. The 
second is the 2001-2005 knowledge-aided KASSPER algorithm that is characterized by an excellent SINR radar 
performance but is unfortunately rather complex. The third is the 2006 knowledge-aided power-centroid (KAPC) 
algorithm that while being much simpler emulates the KASSPER algorithm SINR radar performance. The last is the 
2009 KUPC algorithm that while emulating the SINR radar performance of the KASSPER and KAPC algorithms is 
much simpler to implement since prior knowledge in the form of SAR imagery is unnecessary. 
 
A. The Sample Covariance Matrix Inverse (SCMI) Algorithm 

The SCMI algorithm is conveniently summarized in Fig. 5 where the NMxNM dimensional complex interference 

plus noise covariance matrix xxR̂ is constructed from the addition of the sample average sum KK

i i /XX H
i1∑ =

and the 

diagonal loading factor IDiag
2σ where: 1) the set {Xi: i=1,..,K} consists of K measured complex NM-dimensional column 

vector samples where NM=256 in our simulations: 2) the loading factor IDiag
2σ is adjusted to a value that avoids 

numerical stability problems associated with the inversion of xxR̂ , in our simulations it is assumed that IDiag
2σ =10I; and 

3) the samples {Xi: i=1,..,K} only include measurements from range-bins that are adjacent to the range-bin under 
investigation to avoid possibly significant target interference effects. 
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 Fig. 5.  The SCMI Algorithm. 
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Fig. 6.  The KASSPER Interference Plus Noise Correlation Matrix. 

)()(  )(g
1

AAM

N

i

H
iAAMitii θθθxC

C
f

C ∑
=

= cc

Range-Bin Cell Steering Matrix for Given
Antenna Array Misalignment (AAM) Angle

Antenna Gain for the ith Cell of Range-Bin

Clutter Power for the ith Cell of Range-Bin that is Found From SAR Imagery)

)()(  )(g
1

AAM

N

i

H
iAAMitii θθθxC

C
f

C ∑
=

= cc

Range-Bin Cell Steering Matrix for Given
Antenna Array Misalignment (AAM) Angle

Antenna Gain for the ith Cell of Range-Bin

Clutter Power for the ith Cell of Range-Bin that is Found From SAR Imagery)

 

Fig. 7.  The KASSPER Front Clutter Covariance. 
 

B. The 2001-2005 KASSPER Algorithm 
The KASSPER algorithm investigated [7] is conveniently summarized in Figs. 6 and 7 where the NMxNM 

dimensional complex interference plus noise covariance matrix xxR is assumed perfectly known and given by the 
expression shown in Fig. 6 that is discussed in detail in [1]. In particular, all the covariance matrices shown in Fig. 6 are 
generally complex and of dimension NMxNM where: 1) Cn is the thermal covariance of the radar system; 2) CJ is the 
jammer covariance;  3) CCM is the channel mismatch covariance; 4) CRW is the range walk covariance; 4) CICM is the 
internal clutter motion covariance;  5) b

cC  is the back clutter covariance which is assumed negligible in our simulations 

since the power of the back mainbeam/sidelobes of the antenna pattern is relatively small; and 6) f
cC  is the front clutter 

covariance which is evaluated making use of the stored SAR imagery. In Fig. 7 the expression used to evaluate f
cC  is 

stated where: 1) xi is the real scalar clutter power of the ith range-bin cell; 2) ci(θAAM) is the complex steering vector of 
NM-dimension for the ith range-bin cell with θAAM being the angular amount of antenna array misalignment; and 3) gi(θt) 
is the antenna gain associated with the ith range-bin cell, that is linked to an antenna pattern pointing towards the angular 
location of the investigated target θt on the range-bin. It is assumed here that the antenna pattern is given by the 
analytical expression 
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where θt is the target boresight angle, d is the antenna inter-element spacing, λ is the operating-wavelength, and Kf is the 
front antenna gain constant.  
 
C. The 2006 Knowledge-Aided Power-Centroid (KAPC) Algorithm 

The KAPC algorithm is conveniently summarized in Figs. 8 thru 12 where the NMxNM dimensional complex 
interference plus noise covariance matrix xx

KAPCR shown in Fig. 8 is identical to the KASSPER Rxx of Fig. 6 except for 

the front clutter covariance matrix f
c

KAPCC . More specifically, the front covariance matrix is given by the product of the 
real scalar range-bin power RBP and a compensation antenna pattern (CAP) normalized front clutter covariance 

))(( PC
f

c
CAP RBQC where: 1) RBP is the power of the range-bin defined in Fig. 9 with the assumption that there are 256 
range-bin cells and the antenna pattern of (10) is directed towards the middle 128 range-bin cell; 2) RBPC is the power-
centroid of the range-bin defined in Fig. 10 with its value being equal to 128 for stationary clutter; 3) in Fig. 11 RBP and 
RBPC have been plotted for the 64 range bins constructed from the SAR image of the Mojave Airport in California. 
Moreover, these plots are not far from those obtained with the 512 bytes MMSE PT compressed SAR image also shown 
in Fig. 10;  4) )( PCRBQ  denotes the quantization of the range-bin power centroid RBPC as illustrated in Fig. 12 for three 

quantization levels, i.e., 64, 128 and 192; 5) ))(( PC
f

c
CAP RBQC  is defined in Fig. 12 and consists of first creating an 

antenna pattern from (10) that is directed towards )( PCRBQ and then using these results to create a predicted covariance 

matrix, i.e., ))(( PC
f

c
CAP RBQC ; and 6) the off-line determined NMxNM complex covariance matrix ))(( PC

f
c

CAP RBQC  can 

then be stored for all cases of )( PCRBQ in a memory and later retrieved to determine f
c

KAPCC as the need arises based on 
the determined value for )( PCRBQ .  The advantage of this technique over the KASSPER scheme is that the radar-blind 
and highly compressed SAR image of Fig. 11 can be readily used to yield an excellent estimate of the power and power-
centroid of the range-bin which is all that is needed to determine f

c
KAPCC . 
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Fig. 8.  The KAPC Interference Plus Noise Covariance. 
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Fig. 10.  The KAPC Range Bin Centroid. 
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Fig. 11.  The KAPC SAR Images and their Power and Power-Centroids.
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Fig. 12.  The KAPC Compensation Antenna Patterns (CAPs). 
 
D. The 2009 Knowledge-Unaided Power Centroid (KUPC) Algorithm 

The KUPC algorithm [1] is conveniently summarized in Figs. 13 and 14 where the KUPC NMxNM dimensional 
complex interference plus noise covariance matrix xx

KUPCR is the same as that for the KAPC algorithm with the 

exception that the range-bin power and power-centroid are determined on-line from KK

i i /XX H
i1∑ =

, where this 

expression is a sample covariance matrix (SCM) that only uses samples from the range-bin under consideration. 
Moreover, due to the inherent robustness of range-bin power and power-centroid evaluations, reasonable estimates are 
expected to arise when a target is present on the range-bin under investigation. The KUPC algorithm is illustrated in Fig. 
14 for the N=M=3 case which gives rise to the SCM 9x9 complex matrix shown in this figure. From this matrix RBP is 
simply given by the real (1,1) element of the SCM with symbol m1. On the hand, it is noted from the RBPC algorithm 
displayed in Fig. 13 that to evaluate RBPC the complex SCM elements (1,2) with symbol m2, (1,3) with symbol m3, (1,6) 
with symbol m6 and (1,9) with symbol m9 is all that is needed where: 1)  Nc=NM=9 is the number of assumed range-bin 
cells; and 2) the constants k2, k3, k4 and k5 are for the example considered given by k2=-60, k3=30, k4=-15 and k5=7.5. 
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Fig. 13.  The KUPC RBP and RBPC Algorithms. 
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Fig. 14.  The KUPC Sample Covariance Matrix. 
 
E. Comparison of the SINR Performance of the Radar Schemes 

In Fig. 15 a comparative study of the SINR performance derived with the SCMI, optimum SINR KASSPER, KAPC 
and fast KUPC (or FKUPC) adaptive radar algorithms is displayed where no jammers are assumed and the KAPC and 
FKUPC algorithms use 11 compensating antenna patterns or CAPs. In Table 1 the assumed radar parameters are given 
where the connection of these parameters to the covariance elements of the interference plus noise covariance model of 
Fig. 6 is documented in [1], [7]. In particular, it is noted from Fig. 15b that for range-bin #1 the SCMI scheme is in 
average 5.2 dBs away from the optimum SINR KASSPER performance, while for the KAPC and FKUPC schemes 
noticeably better results of approximately one dB are derived. These results are typical for all the 64 range-bins 
simulated as can be seen from Fig. 15c. Thus as noted in [1] the FKUPC algorithm advances the best possible practical 
results for adaptive radar since unlike the KAPC and KASSPER algorithms it is SAR imagery independent. Moreover, 
this powerful and fast scheme inherently surfaced from pursuing the novel LIT based paradigm shift in signal processing 
design, which, from first principles, seeks the replacement of a lossless signal processor whose input is compressed in a 
highly lossy manner with a lossy signal processor that is significantly better matched to the lossy input. 
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Fig. 15.  No Jammers and 11 CAPs Case. (a) SAR image. (b) Range-Bin #1 Comparative Study.                                          
(c) All Range-Bins Comparative Study. 
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Table 1. Radar Simulation Parameters. 
 

a. Antenna N=16,    M =16,    d/λ=½,   2
nσ = 1 

Front antenna gain constant: K f  = 56 dBs 
Back antenna gain constant: K b = -40 dBs  
Carrier frequency:  fc  = 109  Hz  
Pulse repetition frequency: fr  = 103  Hz  
Antenna array misalignment: AAMθ = 2o 

b. Clutter Nc = 256 
Radar’s ratio: β  = 1 

c. Jammers Jammers were used at -60o, -30o and 45o with 52, 55 and 66 JNRs in 
dBs, respectively, inclusive of antenna gains. 

d. Range Walk  Fraction of remaining area after range walk: ρ=0.999999. 
e. Internal Clutter Motion Shape factor:  b = 5.7 

Wind-speed: 15=ω  mph 
f. Channel Mismatch: 

Narrowband 
      

Amplitude error: iεΔ = 0 for all i,   

Phase-error: iγΔ fluctuates with a 5o rms for all i 

h. Channel Mismatch: 
Finite-Bandwidth 

Amplitude peak deviation: εΔ = 0.001,  
Phase peak deviation: φΔ = 0.1o 

i. Channel Mismatch : 
Angle-Dependent 

Bandwidth:  B = 108 Hz  
Mainbeam width: θΔ = 28.6o 
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