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Abstract—The control roots of latency information theory (LIT) are reviewed in this first paper of a three papers series. 
LIT is the universal guidance theory for efficient system designs that has inherently surfaced from the confluence of five 
ideas. They are: 1) The source entropy and channel capacity performance bounds of Shannon’s mathematical theory of 
communication; 2) The latency time (LT) certainty of Einstein’s relativity theory; 3) The information space (IS) 
uncertainty of Heisenberg’s quantum physics; 4) The black hole Hawking radiation and its Boltzmann thermodynamics 
entropy S in SI J/K;  and 5) The author’s 1978 conjecture of a structural-physical LT-certainty/IS-uncertainty duality for 
stochastic control.  LIT is characterized by a four quadrants revolution with two mathematical-intelligence quadrants and 
two physical-life ones. Each quadrant of LIT is assumed to be physically independent of the others and guides its 
designs with an entropy if it is IS-uncertain and an ectropy if it is LT-certain. While LIT’s physical-life quadrants I and 
III address the efficient use of life time by physical signal movers and of life space by physical signal retainers, 
respectively, its mathematical-intelligence quadrants II and IV address the efficient use of intelligence space by 
mathematical signal sources and of processing time by mathematical signal processors, respectively. The theoretical and 
practical relevance of LIT has already been demonstrated using real-world adaptive radar, physics and biochemistry 
applications. It is the objective of this paper to demonstrate that the structural dualities that are exhibited by the four 
quadrants of LIT are similar to those that were earlier identified by the author for the practical solution of stochastic 
control problems. More specifically, his 1978 conjecture of a structural-physical LT-certainty/IS-uncertainty duality 
between bit detection communication and deterministic quantized control problem solutions that led him to the discovery 
of a Matched Processors practical alternative to Bellman’s Dynamic Programming. 

Index Terms—Control, information space uncertainty, latency time certainty, communication channels, observation 
sensors, knowledge unaided adaptive radar 

 
1. Introduction 

 
This paper investigates the control roots of latency information theory [1]-[3] in three sections. In Section 2 

essential motivation background on latency information theory (LIT) is advanced that reviews the three fundamental 
dualities found in LIT. They are: 1) The latency time (LT) certainty/information space (IS) uncertainty duality; 2) The 
IS-communication/LT-observation duality; and 3) The mathematical-intelligence/physical-life duality. Then in Section 3 
the classical formulations of stochastic ‘continuous’ control problems are noted to yield for the special case of the linear 
quadratic Gaussian (LQG) problem [4] a mathematical separation between the controller gain design and the state 
estimator gain design. Unfortunately, however, these control formulations do not directly address real-world scenarios 
where the controlled processes are non-linear and their disturbances non-Gaussian. Thus in practical settings LQG 
control solutions do not match real-world processor scenarios, which in turn results in controller implementations whose 
performance often depart sharply from that predicted by the LQG control theory. Furthermore, when relays and/or 
digital controllers are used to generate control actions a further non-linear mathematical complication arises since the 
controls must be derived under the assumption of quantized levels. In Section 4, the last section of this paper, stochastic 
quantized control problem solutions are given that are predicated on a conjectured structural-physical LT-certainty/IS-
uncertainty duality, and has the merit of being directly applicable to non-linear processes with non-Gaussian 
disturbances. This LT-certainty/IS-uncertainty duality conjecture will be found to be exactly the same as that of LIT, and 
led the author in 1978 to the discovery of a LT-certainty control methodology called Matched Processors [5]-[6]. More 
specifically, the LT-certainty Matched Processors architectures are similar to the IS-uncertainty Matched Filters 
architectures that are derived for optimum bit detections [7]. Moreover, Matched Processors has been found to offer a 
practical alternative to Bellman’s Dynamic Programming which suffers of a ‘curse of dimensionality’ [8]. 
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Fig.1. The Four Quadrants of the Latency Information Theory Revolution. 
 
 

2. The Latency Information Theory Revolution 
 

LIT is the universal guidance theory for efficient system designs that has inherently surfaced from the confluence of 
five ideas. They are: 1) The source entropy and channel capacity performance bounds of Shannon’s mathematical theory 
of communication [9]; 2) The latency time (LT) certainty of Einstein’s relativity theory; 3) The information space (IS) 
uncertainty of Heisenberg’s quantum physics; 4) The black hole Hawking radiation and its Boltzmann thermodynamics 
entropy S in SI J/K [10]-[11]; and 5) The author’s 1978 conjecture of a structural-physical LT-certainty/IS-uncertainty 
duality for stochastic control [5].   

 
LIT is characterized by a four quadrants revolution with two mathematical-intelligence quadrants and two physical-

life ones which are displayed in Fig. 1 and are reviewed next. In particular, classical information theory is in quadrant II 
and has been given the name mathematical information theory (or MIT) since the units of classical information are 
mathematical binary digits (bits). In addition, classical information is referred in LIT as sourced intelligence space (or 
intel-space in short). With this assigned terminology the distinct contribution of MIT to the structural-physical 
architectures and performance bounds of LIT will become transparent. More specifically, LIT has four system design 
guidance methodologies that are distributed in four quadrants which are assumed to be physically independent but are 
nevertheless bridged by statistical physics. The four quadrants are: 1) The IS-uncertainty/IS-communication MIT of 
quadrant II with its intel-space described with bit units and time-communicated through noisy intel-space channels; 2) 
The LT-certainty/LT-observation mathematical latency theory (MLT) of quadrant IV with its processing intelligence 
time (or intel-time in short) described with binary operator (or bor) units and space-observed across a window-limited 
intel-time sensor; 3) The IS-uncertainty/LT-observation physical information theory (PIT) of quadrant III with its 
retention life space (or life-space in short) described with SI square meter units (specifying the space surface area 
enclosing the retained signal) and time-observed across a noisy life-space sensor; and 4) The LT-certainty/IS-
communication physical latency theory (PLT) of quadrant I with its motion life time (or life-time in short) described 
with SI second units (specifying the time delay of the moved  signal)   and   space-communicated   through  a  multi-path  
life-time  channel. 
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Fig. 2.  The Structural-Physical LT-Certainty/IS-Uncertainty Dualities of the LIT Revolution. 
 

Like MIT with its source-entropy and channel-capacity performance bounds, each of the three other system design 
methodologies, i.e., MLT, PIT and PLT, has two performance bounds that guide lossless and lossy system designs. 
Three major dualities are found in the LIT revolution. They are: 1) The LT-certainty/IS-uncertainty duality that is 
formed by the two certainty PLT and MLT schemes and the two uncertainty MIT and PIT schemes; 2) The physical-
life/mathematical-intelligence duality that is formed by the two physical-life PLT and PIT schemes and the two 
mathematical-intelligence MIT and MLT schemes; and 3) The IS-communication/LT-observation duality that is formed 
by the two IS-communication PLT and MIT schemes and the two LT-observation PIT and MLT schemes. Also six 
minor dualities are noted form Fig. 1. They are the two minor PLT/MIT and MLT/PIT dualities of the LT-certainty/IS-
uncertainty major duality then the two minor PLT/PIT and MIT/MLT dualities of the physical-life/mathematical-
intelligence major duality and finally the two minor PLT/MLT and MIT/PIT dualities of the IS-communication/LT-
observation major duality. 
 

In Fig. 2 a display is given of the structural-physical LT-certainty/IS-uncertainty LIT dualities [1]-[3]. Some of the 
highlights of these structures are briefly discussed next to motivate their connection to their control roots which is the 
main topic of this paper: 

1) The channel and source integrated (CSI) coder structures of the MIT of quadrant II are noted to have dual 
structures in each of the other three quadrants. More specifically, the PLT of quadrant I exhibits channel and 
mover integrated (CMI) coder structures with components that are the duals of the components of the CSI 
coder, e.g. the CMI coder is noted to have a mover encoder/decoder that is the life-time dual of the source 
encoder/decoder of the CSI coder. The same can be said for the sensor and retainer integrated (SRI) coder 
structure of the PIT of quadrant III and the sensor and processor integrated (SPI) coder structure of the MLT 
of quadrant IV.  

2) The signal source that is replaced with the efficiency CSI coder is noted to have duals in each of the 
remaining three quadrants. They are: 1) the signal mover of the PLT of quadrant I that is replaced with the 
efficiency CMI coder; 2) the signal retainer of the PIT of quadrant III that is replaced with the efficiency SRI 
coder; and 3) the signal processor of the MLT of quadrant IV that is replaced with the efficiency SPI coder.  

3) The source-entropy H (or expected source-information) of MIT that is used as a lower performance bound 
for lossless source-coder design is seen to have a dual in each of the remaining three quadrants. They are: 1) 
The mover-ectropy A (or minimax mover-latency) used as a lower performance bound for lossless mover-
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coder design; 2) The retainer-entropy N (or expected retainer-information) used as a lower performance 
bound for lossless retainer-coder design; and 3) The processor-ectropy K (or minimax processor-latency) 
used as a lower performance bound for lossless processor-coder design.  

4) The dimensionless channel-capacity C used as an upper performance bound for lossless CSI-coder design is 
seen to have a dual in each of the remaining three quadrants. More specifically, PLT exhibits a dimensionless 
channel-stay T as an upper performance bound for lossless CMI-coder design, PIT exhibits a dimensionless 
sensor-scope I as an upper performance bound for lossless SRI-coder design, and MLT exhibits a 
dimensionless sensor-consciousness F as an upper performance bound for lossless SPI-coder design. As a 
memory aid for the symbols used for these four performance bounds of LIT, it is noted from quadrant I of 
Fig. 2 that the contraction for the word fictional, i.e., FICT., surfaces while forming the shape of the speed of 
light symbol c (corresponding to the maximum possible speed for any signal mover of quadrant I), when one 
moves from quadrant to quadrant on the LIT revolution following the upper performance bound sequence F 
(quadrant IV) I (quadrant III) C (quadrant II) T (quadrant I). 

5) While the movers of the physical quadrant I cannot exceed the speed of light in a vacuum limit of c=2.9979 x 
108 m/sec conjectured by Einstein, the retainers of the physical quadrant III cannot exceed the pace of dark in 
a uncharged non-rotating black hole (UNBH) limit conjectured by the author and derived in [12] of χ=6.1123 
x 1063 sec/m3. As a memory aid for the symbols used for the four lower performance bounds of LIT, it is 
noted from quadrant III of Fig. 2, that the name KHAN surfaces while forming a similar shape as the pace of 
dark symbol χ by moving from quadrant to quadrant following the lower performance bound sequence K 
(quadrant IV) H (quadrant II) A (quadrant I) N (quadrant III)—it is also assumed here, of course, that 
the movement from H to A is not visible since it occurs at the speed of light c of quadrant I. Finally, the 
contraction FICT (c) of quadrant I for the LIT upper performance bounds, and the name KHAN (χ) of 
quadrant III for the LIT lower performance bounds, can be easily recalled together by thinking of ‘a fictional 
FICT emperor KHAN that while wearing his crown c sits on his imperial chair χ’.    

Moreover, the performance bounds of LIT can be bridged by thermodynamics and its recently discovered time dual 
that has been given the name lingerdynamics [1]-[2]. 

 
3. The Stochastic Linear Quadratic Gaussian (LQG) Control Problem 

 
In Fig. 3 the discrete-time stochastic LQG control problem is displayed where: 1) The control system consists of a 

controlled signal processor (or plant), a noisy channel, and a controller with a sensor of the estimated state whose latency 
time window of observation is limited by the linear quadratic continuous control evaluator subsection; 2) The signal 
processor is modeled with a real discrete time linear state equation xk+1=Akxk+Bkuk+wk where xk is a n-dimensional state 
vector, uk is a p-dimensional input vector, the state matrix Ak and control vector Bk are of appropriate dimensions, and 
wk is a n-dimensional vector denoting a zero mean Gaussian state noise; 3) The output system is modeled with the real 
linear equation yk=Ckxk+vk where yk is a m-dimensional output vector, Ck is an output matrix of appropriate dimensions, 
and vk is a  m-dimensional disturbance vector denoting a zero mean Gaussian output noise; 4) The performance criterion 
(or cost to go) ( ) )(1,.,, N
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Fig. 3.  The Discrete-Time Stochastic Linear Quadratic Gaussian (LQG) ‘Continuous’ Control Problem. 
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Fig. 4.  The LIT revolution display of the IS-uncertainty LG estimation and LT-certainty continuous LQ control duals.  
 

sum of the costs associated with the present and future states and controls where the matrices F, {Qi} and {Ri} are 
weighting matrices of appropriate dimensions and properties linked to the state and control actions; and 5) the controller 
consists of the cascade of a state estimator and a continuous (or non-quantized) control evaluator whose control action uk 
minimizes the cost to go.  

Moreover, in Fig. 3 the solution to the LQG control problem is also noted where:  1) The state estimator is given by 
the real linear state equation ( )kkkkkkkkk CKBA xyuxx ˆ  ˆˆ 1 −++=+  with kx̂  being an estimate of xk and Kk is a gain 
matrix of appropriate dimensions that is designed off-line and is independent of the ‘certainty’ control input uk. In 
particular,  Kk is found from the solution of a Riccatti equation solved forwards in time [4]; 2) The control subsection is 
given by the real linear expression uk=Lk kx̂ with Lk being a gain matrix of appropriate dimensions that is designed off-
line and is independent of the ‘uncertainty’ disturbance inputs wk and vk. In particular, Lk is found from the solution of a 
Riccatti equation solved backwards in time [4]. 

The aforementioned separation of the Lk and Kk designs can also be viewed as the solution of two physically 
independent problems, one an LT-certainty control problem and the other an IS-uncertainty state estimation one. These 
two problems form together the structural-physical LT-certaint/IS-uncertainty duality depicted in Fig. 4 with the aid of 
the four quadrants LIT revolution. In Fig. 4 the time-dual Riccatti equations used to find Lk and Kk are also stated along 
with the certainty and uncertainty quadratic performance criterions that when minimized give rise to them. 

4. The Stochastic Matched Processors Control Problem 
In Fig. 5 the discrete-time stochastic quantized control problem is displayed where: 1) The control system consists 

of a controlled signal processor, a noisy channel and a controller with a window-limited sensor of the state estimator 
output that satisfies the latency time observation constraint of the quantized control evaluator subsection; 2) The  
controlled  signal  processor  is  modeled  with  the real discrete nonlinear state equation xk+1=fk(xk,uk,wk) where fk is a  
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Fig. 5.  The Discrete-Time Stochastic ‘Quantized’ Control Problem. 
 
nonlinear function of appropriate dimensions, xk is a n-dimensional state vector, uk is a quantized p-dimensional input 
vector with M possible realizations selected from the vector set {q1,..,qM} and wk is an arbitrary n-dimensional state 
noise; 3) The output system is modeled with the real nonlinear equation yk=gk(xk,vk) where gk is a nonlinear function of 
appropriate dimensions, yk is a m-dimensional vector output and vk is a m-dimensional vector denoting an arbitrary n-
dimensional output noise; 4) The performance criterion (or cost to go) 

( ))]1(),.,1([,, 1,1, −+=−+ NkJ NkkkNk uuUux
)},({1,.,

1

))(())(),((
kkkk fNki Ni NxLiuixL

uxx =−=
+

∑ += , is the sum of the costs {Li} 

associated with the present and future states and controls where )]1(),.,1([1,1 −+=−+ NkNk uuU  denotes the future control 

sequence; 4) the controller consists of the cascade of a nonlinear state estimator ),,ˆ(ˆ 1 kkkkk h yuxx =+
 with kx̂  being an 

estimate of xk and a quantized control evaluator whose control action uk is extracted from the countable set {q1,..,qM} 
that  minimizes the cost to go; and 5) the control evaluator has a structure made of processors that are matched to future 
control sequences.  
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Fig. 6.  The LIT revolution display of the IS-uncertainty detection and the LT-certainty quantized control duals. 

Proc. of SPIE Vol. 7708  77080T-6



 

 

The detailed matched processors architecture of the quantized control evaluator is given in the LT-certainty/LT-
observation quadrant IV of the LIT revolution given in Fig. 6 for a simple case where uk is a scalar and {q1,..,qM} 
consists of the binary set {L, H} with L denoting a low voltage and H a high voltage. From this figure it is noted that the 
matched processors are constructed from the deterministic (or certainty) cost to go expression under the assumption that 
there are not state or output disturbances associated with the signal processor. Thus this solution approach assumes the 
separation of the stochastic quantized control problem into two physically independent design problems. One is the 
control evaluator subsection design problem depicted in the LT-certainty/LT-observation quadrant IV of Fig. 6. The 
other is the state estimator design problem depicted in the IS-uncertainty/IS-communication quadrant II of Fig. 4 that 
uses the non-linear state estimator and controlled signal processor structures of Fig. 5 instead of the linear ones of Fig. 3. 
Moreover, in Fig. 6 it is also shown that the displayed matched processors control evaluation structure of quadrant IV is 
similar to that of the matched filters solution for the detection of bits in communications displayed in quadrant II. This 
solution approach to stochastic quantized control problems was first conjectured by the author in 1978 [5]. In essence, 
this scheme offered a structural-physical LT-certainty/IS-uncertainty duality methodology for the design of quantized 
control systems that more recently has led him to the discovery of time duals for both information theory and 
thermodynamics as well as a space dual for the laws of motion in physics [1]-[3], [12].  

 
A close investigation of the matched processors solution given in Fig. 6 reveals a potential dimensionality problem 

since the number of matched processors needed for the control evaluations is an exponential function of the number of 
control stages to go. Fortunately, however, this problem is readily addressed by assuming that at each control stage the 
control sequence to go, i.e., Uk+I,N-1 (where I is a small integer number, say one, two, etc.) is set to a suitable constant 
value, e.g., zero. Fig. 7 presents such a scheme where only 2 matched processors, rather than 64, are used since it is 
assumed that Uk+1,k+5=[0 0 0 0 0] (notice that in Fig. 6 a total of 64 matched processors must perform evaluations to 
arrive at an optimum solution). In [5]-[6] is shown that this approach can yield outstanding practical results. Moreover, it 
is proven for a scalar case in [5], in a more than 50 pages long proof that such a scheme yields an optimum solution 
regardless of the number of control stages to go.  

 

 

 

Fig. 7.  A Simple Matched Processors Controller That Only Uses Two Matched Processors. 
 
 
 

5. Conclusions 
 

In this review paper it has been noted that the conjectured structural-physical LT-certainty/IS-uncertainty duality of 
the LIT revolution is similar to that advanced by the author in 1978 to address the practical solution of stochastic control 
problems. This assumed property manifests itself in the LIT revolution by its guidance of system designs via duality 
structures and performance bounds. The advancement of the four physically independent quadrants of the LIT revolution 
has further motivated the search for a statistical physics bridge for all of its quadrants. This investigation has given rise 
to the revelation of a time dual for thermodynamics that has been named lingerdynamics and like thermodynamics has 
four physical laws that drive the Universe. 
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