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ABSTRACT

In this third of a multi-paper series the discovery of a space dual for the laws of motion is reported and named the laws of
retention. This space-time duality in physics is found to inherently surface from a latency-information theory (LI/7) that
is treated in the first two papers of this multi-paper series. A motion-coder and a retention-coder are fundamental
elements of a LIT’s recognition-communication system. While a LIT’s motion-coder addresses motion-time issues of
knowledge motion, a LIT’s retention-coder addresses retention-space issues of knowledge retention. For the design of a
motion-coder, such as a modulation-antenna system, the laws of motion in physics are used while for the design of a
retention-coder, such as a write/read memory, the newly advanced laws of retention can be used. Furthermore, while the
laws of motion reflect a configuration of space certainty, the laws of retention reflect a passing of time uncertainty.
Since the retention duals of motion concepts are too many to cover in a single publication, the discussion will be
centered on the retention duals for Newton’s Principia and the gravitational law, Coulomb’s electrical law, Maxwell’s
equations, Einstein’s relativity theory, quantum mechanics, and the uncertainty principle. Furthermore the retention
duals will be illustrated with an uncharged and non-rotating black hole (UNBH). A UNBH is the retention dual of a
vacuum since the UNBH and vacuum offer, from a theoretical perspective, the least resistance to knowledge retention
and motion, respectively. Using this space-time duality insight it will be shown that the speed of light in a vacuum of
c,=2.9979 x 10° meters/sec has a retention dual, herein called the pace of dark in a UNBH of ¢z=6.1123 x 10% secs/m’
where ‘pace’ refers to the expected retention-time per retention-space for the ‘dark’ knowledge residing in a black hole.
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motion-time, processing-time, retention-space, bits, bors, processor ectropy, source entropy, sensor consciousness,
channel capacity, knowledge aided, intelligent system, DARPA, KASSPER, laws of motion, laws of retention, motion
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1. INTRODUCTION

The laws of motion originated with Newton’s 1687 Principia [1] which laid out the mathematical principles of time,
force, and motion that have served over more than three centuries as the essential catalyst for significant innovations. A
fundamental application of these laws is in the design of a communication system [2]. This is the case since the objective
of any communication system is to achieve knowledge motion with the least possible use of motion-time while subjected
to design constraints. For instance, the designer of an electrical communication system will use Maxwell’s equations and
spectral analysis tools to design a modulation-antenna subsystem, or motion-coder, for knowledge motion. The space-
dislocated knowledge for a ‘general’ communication system can be anything, e.g., the position and/or velocity of an
object, the spin state of a photon, the charge of a fundamental particle, etc. On the other hand, the motion-time or
lifetime penalty associated with knowledge motion cannot be avoided since there is an upper limit on the speed of
motion that is given by the speed of light in a vacuum of approximately 2.9979 x 10° meters/sec. Nevertheless, when
addressing motion problems one selects according to the application at hand the appropriate laws of motion in physics
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to use. Some of these laws are Newton’s Principia and the gravitational law of classical mechanics, Coulomb’s electrical
law, Maxwell’s electromagnetism equations, Einstein’s special and general relativity, quantum mechanics, the
uncertainty principle, relativistic quantum mechanics, etc. Furthermore, all of these laws reflect a configuration of space
certainty associated with knowledge motion, even if one is dealing with wave motions or as is the case in quantum
mechanics a probabilistic interpretation is advanced for the location and/or velocity of small objects and/or fundamental
particles.

Unfortunately, however, the aforementioned laws of motion do not address another fundamental problem in physics
that prominently surfaces from the time dual of a communication system, i.e., a recognition system [3]-[4]. This physics
problem is that a recognition system requires a retention-coder for knowledge retention. A retention-coder is a write/read
device for the retention of prior-knowledge. The recognition system’s retention-coder is the space dual of a
communication system’s motion-coder. While the motion-coder design is concerned with motion-time (or lifetime)
penalty issues of knowledge space motion, the retention-coder design is concerned with retention-space (or lifespace)
penalty issues of knowledge time retention. Also while motion problems are governed by a configuration of space
certainty, retention problems are governed by a passing of time uncertainty. Soon after I discovered latency theory’s
sensor coding as the time dual of information theory’s channel coding in the summer of 2006 [5], I realized that for the
laws of motion in physics, which addresses motion-time penalty issues, there must be a ‘laws of retention in physics’
dual which addresses retention-space penalty issues. Since this time I have researched this problem with the first
retention-motion (or space-time) duality in physics results reported here. To illustrate this space-time duality an
uncharged and non-rotating black hole (UNBH) will be used [6]. A UNBH is the retention dual of a vacuum since the
UNBH and vacuum offer, from a theoretical perspective, the least resistance to knowledge retention and motion,
respectively. In other words, while knowledge suffers the least lifetime penalty when moved thru a vacuum (e.g., a laser
signal pays a lifetime penalty of approximately 15 msec when moved from New York to California via a fiber optics
channel), knowledge suffers the least lifespace penalty when retained in a black hole (e.g., one kilogram of mass pays a
lifespace penalty of approximately 1.3839 x 10™* cubic meters when retained for 1,846 years in a UNBH [7]). Using this
space-time duality for physics insight it is shown in Appendix A that the speed of light ¢), in motion-time/motion-space
units has a retention dual, herein called the pace of dark ci, in expected retention-time per retention-space units given by

2
Cp :m:6.1123x1063 secs/m’ (1.1)

wG
where 71 ,,=1.0546 x 107* kg.m’/sec is Plank’s reduced constant of quantum mechanics and G, = 6.693 x 10" Nm’/kg’

is the gravitational constant. Pace in ‘pace of dark’ refers to the expected retention-time per retention-space for the ‘dark’
knowledge residing in a black hole. Thus just like the value of ¢, tell us that knowledge cannot be moved at a rate faster
than 2.9979 x 10 meters per second, the value of ¢ tell us that knowledge cannot be retained at an expectation rate
faster than 6.1123 x 10% seconds per cubic meter of space.

The paper is organized as follows. It begins with the discussion of the recognition/communication system in
latency-information theory (L/7) which integrates in one picture four subsystems. The first two are the standard channel
and source integrated (CSI) and sensor and processor integrated (SPI) coders of LIT [3]-[4] and the next two are a
motion-coder and a retention-coder that naturally arise from LIT. In the next section in the same spirit as done with CSI
and SPI coders, novel motion-time and retention-space bounds are defined for guidance in the design of motion-coders
and retention-coders. Subsequently, starting first with Newton’s Principia the corresponding retention duals are found
for the laws of motions. The paper ends with a conclusions section.

2. LATENCY-INFORMATION THEORY (LIT)

Latency-information theory provides performance bounds that guide the design of the general system displayed in
Fig. 1. This general system consists of a communication system embedded in a recognition system [3]. In [3] a detailed
description is given of the communication system and recognition system subsystems appearing in this figure.
Nevertheless a succinct summary of these subsystems is advanced next. While a communication system is composed of
a channel, source-coder, channel-coder and motion-coder, the time dual of a communication system, i.e., a recognition
system, is composed of a sensor, processor-coder, sensor-coder and retention-coder. A channel is the medium through
which knowledge must be space dislocated. A source-coder (encoder/decoder) replaces an inefficient signal-source with
one yielding the smallest sourced-space (in binary digits (bits)) penalty possible. A channel-coder identifies the
necessary overhead-knowledge for a more accurate transmission of the sourced-space. A motion-coder is a
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transmitter/receiver device that moves knowledge from one location in space to another with the smallest motion-time
penalty possible. A recognition system, as discovered in [3], uses prior-knowledge about a signal-processor’s input to
enable the sensing of its output by a processing-time limited sensor when the fastest possible signal-processor
replacement cannot achieve this task. A sensor is the time dual of a channel and is the reason for the required time-
dislocation of the processing-time to an earlier time via the use of prior-knowledge. The processor-coder is the time dual
of the source-coder and replaces the signal-processor with one yielding the smallest processing-time (in binary operators
(bors)) penalty possible. The sensor coder is the time dual of the channel-coder and its purpose is to identify the
necessary prior-knowledge for an earlier beginning of the processing-time. A retention-coder is a write/read device that
retains knowledge from one time instant to another with the smallest retention-space penalty possible. Information-
theory uses the sourced-space performance bound penalties of source-entropy M and channel-capacity € to guide the
design of channel and source integrated (CSI) coders. On the other hand, latency-theory uses the processing-time
performance bound penalties of processor-ectropy K and sensor-consciousness ¥ to guide the design of sensor and
processor integrated (SP/) coders. While the bounds H and € are governed by the uncertainty associated with the
passing of time, the bounds K and ¥ are governed by the certainty associated with the configuration of space. Finally,
the laws in physics are used in the design of motion-coders and retention-coders. While the laws of motion are used for
the design of motion-coders, in this paper a newly discovered space dual for the laws of motion, herein named the laws
of retention, will be advanced for the design of retention-coders. In section 4 we will derive the laws of retention.
However, first in the next section we will define performance bounds for use in the design of motion-coders and
retention-coders.

3. MOTION-CODER AND RETENTION-CODER PERFORMANCE BOUNDS

The motion-coder performance bound, i.e., the motion-ectropy A, and the retention-coder performance bound,
i.e., the retention-entropy /V, defined here are similar in structure to those defined for a processor-coder, i.e., the
processor-ectropy K, and a source-coder, i.e., the source-entropy H, respectively, in [3]-[4].

3.1 Motion-Ectropy A: The Motion-coder Performance Bound

In the case of a motion-coder its motion-ectropy A in motion-time (or lifetime) penalty units is governed by a
configuration of space certainty similar in nature to that which governs the processor-ectropy K in bors of SPI coders.
Thus the motion-ectropy A has a similar minimax mathematical structure [3]-[4] in its definition, i.e.,

A = max(Ly(z)),..Lufzy)) in seconds per z=|z,,...,2,, ] 3.1)
where z is the motion-decoder vector output with M elements {z;} and Ly[z;] is the motion-latency of z; which is defined
as the minimum motion-time that is needed to obtain z; after the original motion system is redesigned subject to
implementation motion constraints {C), [z;]} [3]. For instance, the original motion system can be an automobile that is
used to transport a family of five (M=5) from New York to California and the redesigned motion system is implemented
subject to the implementation motion constraint that one or more commercial airline planes may be used to transport the
family. Thus

Ly(z))=g(Cy [z]) in second per z; (3.2)

with g(Cylz;]) indicating that Ly, (z;) is a function of Cy[z,;]. For instance, in the case of our running example the value of
Ly/(z;) can be quite different for each member of the family, since it is possible for all the members of the family to travel
to California using different planes. In all the computations it will also be assumed that the constraint C,[z;] is governed
by a configuration of space certainty as is the case in latency theory [3]. For instance, for our running example we will
assume that the automobile or plane(s) will always leave and arrive on time. The design of a motion-coder is then
approached using A as a motion-time (or lifetime penalty) performance bound for the desired knowledge space-
dislocation through motion-space. For instance, for our running example the value of A for our family of five can be of
six hours of travel time from New York to California. Similarly as for a processor-coder [3], for which a processor-coder
rate Rpc is defined, a motion-coder rate Ryc can now be defined which leads to the definition of either a lossless or lossy
motion-coder. A motion-coder will be lossless when R, is achievable, i.e.,

A<R, <R, (33)

where R, is the motion rate of the original motion system. For instance, for our running example R, may be given by the
48 hours that the family of five will take to travel by automobile from New York to California. A motion-coder will be
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ideal when Ry,=A and is equivalent to the original motion system when Ry,=Rj,. On the other hand, a lossy motion-
coder is one that has an R, that is not achievable, i.e.,

0<R, <A 34
but is faster and simpler than a lossless motion-coder. For instance, for our running example we will have a lossy
motion-coder when the movement from New York to California of the five member family is only implemented for the
member of the family exhibiting the smallest motion-latency value, say of five hours, which is less than the six hours
given by A. We will also achieve a significant implementation simplicity and airfare savings.

3.2 Retention-Entropy /V: The Retention-coder Performance Bound

In the case of a retention-coder its retention-entropy /V in retention-space (or lifespace) penalty per stored mass
and/or energy is governed by a passing of time uncertainty similar in nature to that governing Shannon’s source-entropy
H in bits of CSI coders. Thus the retention-entropy definition will have the same expectation structure as H [3]. In
addition, /V will be defined in terms of the microstate uncertainties in physics [6]. Also, a retention constant kz in cubic
meters per retained mass and/or energy will be used for V. This retention constant will have a value extracted from
UNBH conditions since a UNBH retention-coder provides the maximum expected retention-time per lifespace for the
given mass and/or energy. Thus the retention-entropy is defined as follows

\
N = ZP[wi Velw,] inm’ per Wefw,,.,w,} (3.5)
i=1

where W is a knowledge discrete random variable (or random microstate) with ) outcomes (or microstate realizations)
{w;} and Ix[w] is the retention-information provided by the outcome w; and given by the expression

Ti
I,(w)=k, A—’jlogz(l / P[w,]) inm’ per w; (3.6)
R
with P[w;] being the probability of the microstate w; whose value is driven by the passing of time, 7, 1; is the expected
retention-time of w;, A]ie is the surface area of the volume wherein wj is retained, and kj is the retention constant
2 2
_ Ty Gy
s
120c;, In2

In addition, for the special case where all the microstates of W are equally likely and their expected retention-times and
retention surfaces are equal it follows that

=2.4730x10™* in m’/sec. (3.7)

R

T .
N =k, % log, Q inm’ per W (3.8)
Ap
The expression for &z (3.7) is derived using UNBH conditions and under the assumption that all microstates are
equally likely. More specifically it is first assumed that the retention-entropy /V is equal to the volume or retention-space
of a UNBH, thus

T
N =k, %log,Q=V, (3.9)
Ap
where V3 is the UNBH volume. Next using the microstate thermodynamic entropy S=k,nQ= k;/log,{¥/In2 expression in
(3.9) where £, is Boltzmann’s constant it is found that

TS

N =k, In2="v, (3.10)

R™M

Then using Hawking’s black hole thermodynamic entropy S = A k MC;M / (4h MGM) in (3.10) the expression
3
¢, In2
N =k, T, 21—=V, (3.11)
4n,,G,,

is obtained. Next solving expression (3.11) for k; it follows that
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_ Vi 4n,G,
T, c,In2
From equation (A.12) in Appendix A it is then found that for a UNBH the ratio 7x/V is the same as the pace of dark c

R (3.12)

expression (1.1) under the assumption that the mass and/or energy starts its retention at t;,, =0. Thus
T,/V,=c, =480c;, /1, G,, is used in (3.12) to yield the desired result (3.7). Furthermore, since the UNBH is

spherical in shape we use Tp/dz= (T3/Vz)( 7y /3) in (3.8) to obtain the equivalent expression

r ,
N=kRCR?RlogZQ:kRm;H log, Q in m’ per W (3.13)
where 7, =2G,,my" | c, is the Schwarzschild radius fora UNBH, m,, is the UNBH mass, and
. _8n,G, .
kp =—2— =7.5046x10"" in m’/kg (3.14)
3c;, In2

In addition, to conform to the holographic principle [7] an alternative definition for the retention-entropy can be
given in squared meter units. Thus the following holographic retention-entropy V" is defined

v
N" ZZP[Wi]]f;(Wi) in m’ per W e {w,,...,wg | (3.15)
=1

where W is a knowledge discrete random variable (random microstate) with { outcomes (or microstate realizations)

{w;} and [ ; (w,) is the holographic retention-information provided by the outcome w; and given by the expression

[;(wi):kR%logz(l/P[Wi]) in m’ perw (3.16)
R

with all the parameters of (3.16) being the same as those in (3.6) except that the retention surface area A; has been

replaced with the retention volume V; . For the special case where all the microstates of W are equally likely and their
expected retention-times and retention volumes are equal it follows that

T .
N" =k, % log, Q inm* per W (3.17)
VR
It should be noted that when (3.17) is equated to the UNBH surface A4y it is once again found, as expected, that &z is
given by (3.7). Furthermore, if we let Tx/V =cy in (3.17), i.e., for a UNBH condition, it follows that

N" =kjlog, Q inm* per W (3.18)

where kﬁ is the holographic retention constant given by

ki =k (T, /Vy)=4h,G, /c,In2=(1920/In2)/c,,c, =1.5112 x10™ m’perWw  (3.19)

The design of a retention-coder is then approached using ¥V (or V") as a lower lifespace performance bound for
the desired knowledge expected retention-time. A retention-coder will be lossless when

N <Ry <R, (3.20)
where R, is the retention-coder rate in m’ (or m’) per stored mass and/or energy and R, is the retention rate of some
initial retention system. On the other hand, a lossy retention-coder is one that has a R rc thatis not achievable, i.e.,

0<R, <N. (3.21)
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4. THE LAWS OF RETENTION
In this section we will find the space dual of the laws of motion in physics, starting first with Newton’s
Principia [1] and then moving on to its extensions.

4.1 The Retention-Principia

Refer to Fig. 2 A-D where a mass in motion is displayed. This mass will also be called a motion-mass and is
given the notation m,, when contrasting it to its space dual, i.e., a retention-mater m; that will be defined later. In Fig.
2A the true nonzero occupancy-space Sy of my, is shown where S, is said to be governed by a configuration of space
certainty. Furthermore, m;, can vary as a function of time, i.e., my, (t/), where the time #,, will also be called a motion-
time to contrast it with the expected retention-time T of retention problems to be discussed later. An example of m,(t),)
is a space rocket whose mass changes, due to its fuel consumption, as #,, increases. In Fig. 2B we present an idealization

of the occupancy-space S of m,, (¢}, ) for the motion-time tj/[ . The idealization consists of representing m,, (¢,,) by a

point (shown in the picture as a rectangle) in three dimensional vector space $y=[Si;vSuSnz], 1.€. S:) —s, - To

facilitate the discussion of the space-time duality in physics it will be assumed in this paper, unless specified otherwise,
that all motions are in one dimensional space, thus when describing this case the scalar space s,, variable will be used. In
addition, any space location used for motion purposes will also be called motion-space to contrast it with the retention-
space Sy (in cubic meters) of retention problems to be discussed later. Fig. 2C is similar to Fig. 2B except that it presents

m,, (z‘AZ/I ) after its space-dislocation (SD) from Szlu to wa ie., SD = sif - S}M , and resulting in the lifetime penalty (LTP)
LTP = tfl —t,, - The difference of the rectangle horizontal length of Fig. 2C from that of Fig. 2B indicates that my, (1)
has paid a lifetime penalty for its space-dislocation. In Fig. 2D the principia model for the movement of m,, is

summarized. In Table 1A a summary is provided of well known motion-principia concepts that relate to the motion-
principia model of Fig. 2D. These concepts will be contrasted next with those of the retention-principia model.

Refer to Fig. 2 E-H where a retention-mater m; is displayed which is the space dual of a motion-mass my,. mg
is given in Joules.m’/sec units and is a function of m,, as will be seen shortly. In Fig. 2E the true space distributed
occupancy-time T, of my is shown where T, is governed by a passing of time uncertainty. Furthermore, my can vary as a
function of retention-space Sy in cubic space units, i.e., mz(Sk). This is the case, for instance, with a UNBH whose my
increases as its volume V=S increases when it receives new motion-mass and/or motion-energy. In Fig. 2F we present

an idealization of the occupancy-time Té of m,(S})for the initial retention-space S Ile. The idealization consists of

having the retention-mater m,, (S ;) characterized by a single expected retention-time 7’ ,; (shown in Fig. 2F as a circle),
ie., Tg - T,;. Fig. 2G is similar to Fig. 2F except that it presents m, (S;) after the time-dislocation (7D) from

Tpto Ty, ie., TD =T, —T,, and resulting in a lifespace penalty (LSP) LSP = S, — S},. The difference in radius of the
circle of Fig. 2G from that of Fig. 2F indicates that mg(Sk) has paid a lifespace penalty for its time-dislocation. For
example, in our running example, the UNBH must pay the penalty of increasing its lifespace Sy (or equivalently its
volume ¥y since Sp=V3) to increase its retention-time from T }; to T R2 . Furthermore, this lifespace increase is
accompanied by a mass increase as noted from the volume-mass relation for a UNBH derived in Appendix A (A.11). In
Fig. 2H the principia model for the retention of m, is summarized. This retention-principia model is the space dual of
the motion-principia model of Fig. 2D. Associated with the retention-principia model the most fundamental retention-
principia concepts are then summarized in Table 1B. The motion-principia and retention-principia concepts of Table 1A
and 1B are now contrasted: 1) the retention-space Sy in m’ is the space dual of the motion-time ¢); where Sz and ¢y,
assume independent variable roles; 2) the retention-time 7% in sec is the space dual of the motion-space sy, where T and
s)r assume dependent variable roles in terms of Sk and #, respectively, e.g., from (A.10) a UNBH’s retention-time is
given by Tp =cpV, =c,S; when the mﬁH ’s retention begins at the zero time instant, i.e., l‘]iw =0; 3) the
retention-tempo vy=dT1p/dSy in sec/m’ is the space dual of the motion-velocity vy=ds)/dty, e.g., for the UNBH
ve=dTr/dSg= cg since T, R =C RS z > 4) the retention-pace bz=|vg| in sec/m’ is the space dual of the motion-speed b,, and
for the UNBH it is the same as the pace of dark cp; 5) the retention-escalation az=dvy/dSy in sec/m® is the space dual of
the motion-acceleration ay~=dv,/dt,; where az=0 for the UNBH; 6) the retention-mater my in Joule.m’/sec is the space

dual of the motion-mass m,, and for a UNBH is given by mgH = (cfd /cp )mﬁfH =1.4704 x 10 mf,H Joule.m’/sec
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(derived next); 7) the retention-energy p, =m,v, in Joules is the space dual of the motion-momentum p,, =m,v,,

and for a UNBH p. is the same as the UNBH rest motion-energy EJ' =m;"c; , thus

EBH BH 2 BH _ BH
M

_ _ _BH __ _ BH . . s . . . BH _ (.2 BH
=m,, C, =Pr =My Vp =my c, (from this condition the aforementioned relationship m," = (c v/ Cr

M
follows); 8) the retention-pressure f, = dp, /dS,, in Pascals is the space dual of the motion-force f,, =dp,, /dt,, and

for 'a UNBH after using (A.ll) in f,=dp,/dS,=dE, /dV,=c, (dV,/dm,) we obtain
12 = (el 13272GY )(m2 ) = 468/(m2" ¥ = (c¥, 132G, )(m2" f = 2.1647 x10° /(2 | Pascals;  9)  the
kinetic retention-viscosity KFE, = p§/2m r 1n viscosity units is the space dual of the kinetic motion-energy
KE,, = p;, /2m, and for a UNBH is given by KE." = pr/2m}" =m} ci /2=E) c,/2=m} ci,c,/2 in

2
viscosity units; and 10) the retention-effort W, = r" fo (T)HAT, in viscosity units for a T; to T Rz time-dislocation is
T;

the space dual of the  motion-work W, = J' ’j‘%{ £y (s),)ds,, and for a UNBH yields

L i % g (S
W= [T, = [ (el 1, Ldm T, = [ (e, 1T, L dm T, = [ Verdmi = i (S -mi (Sy) e
= (mP (13)-m™ (1},)) ¢} c, in viscosity units. In addition, we have 2 = I e e

mii (Sg)
=(EF (2 - EI (1)) c, where EX'(S)=mp"(Sp)c; and EX'(¢,)=mi(t,)cs,. The mater-viscosity

equivalence equation E,(S,)=m,(S, )ci is the space dual of the Einstein’s mass-energy equivalence equation

cpdmy" = Ep" (Sp)—E7" (Sp)

E, (t,)=m,(t, )c; - From the previous W/ expression the energy-viscosity duality equation E (S, )=E,, (¢,,) cr
also arises. Finally it is noted that our earlier use of a UNBH to illustrate retention ideas required us to use physics
motion concepts that went far beyond Newton’s Principia, e.g., when E, =m,, 01%4 was used to derive the mass-mater

duality relation m,, = (clﬁ /cq )mM .

4.2 The Retention Special Relativity

Refer to Fig. 3 where Einstein’s special relativity along with the invariant Minkowski spacetime length is
displayed in a space-time duality in physics form. In Fig. 3A-C the motion special relativity is shown while in Fig. 3D-F
the retention special relativity is displayed. In Fig. 3A the invariant space length /), (in motion-space units) of motion-
spacetime is given while in Fig. 3D the space dual invariant time length /; (in retention-time units) of retention-
spacetime is displayed. In Fig. 3B the motion Lorentz transformations between the observations of two motion inertial
(or constant velocity) frames is depicted while in Fig. 3E the space dual retention transformations between the
observations of two retention inertial (or constant tempo) frames is given. Finally, in Fig. 3C the motion Einstein

invariant energy-momentum equation is shown where m,, cj[ with m,, at rest (or zero velocity) is motion inertial frame

invariant, while in Fig. 3F the space dual retention invariant viscosity-energy equation is presented where m Rcfe with mpg
at rest (or zero tempo) is retention frame invariant.

4.3 The Retention-Gravidness and Retention-Exalted Law

Refer to Fig. 4 where Newton’s gravitational law is displayed in its space-time duality in physics field form. In
Fig. 4A-D the motion-gravitational law case is shown and in Fig. 4E-H its space dual is displayed. This space dual is
named the retention-gravidness law: in Table 2 space-time duality in physics terms that do not already appear in Table 1
are given for ease of reference. In Fig. 4A-B two different motion-masses are shown that share the same motion-time ty;.
This is reflected in the space-dislocation model of Fig. 4C where both masses are described using the same rectangle
length. Furthermore, in Fig. 4C massless but energetic gravitons speeding at the speed of light are displayed that carry
the gravitational field in both directions. It is assumed here that the two masses exist in a vacuum. Thus, a lifetime

penalty of LTP = ‘s 1%4 - S/lu ‘ / ¢,, governs the graviton movement. Since this lifetime penalty is the smallest possible one
. . . _ 2 1 . . oy
it is the same as the motion-ectropy A, i.c., A= LTP = ‘s L—sy ‘ /¢c,, - In Fig. 4D expressions for the gravitational force

f5%*acting on the mass m;, and due to the gravitational field G,, of m,, is given. Next in Fig. 4E-H the retention
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dual is displayed where Fig. 4E-F display two different maters that share the same retention-space Si. For instance, for
our UNBH running example m}e can have the center of mass of its associated m,]w in the middle of the UNBH while

mfa can have the center of mass of its associated m}w just inside the event horizon. Since these two maters share the
same retention-space Sz they are shown in the time-dislocation model of Fig. 4G with the same circle radius.
Furthermore, in Fig. 4G materless (i.e., mz=0) but viscositic retention-gravids pacing at the pace of dark are displayed
carrying the retention-gravidness field (the space dual of the gravitational field) in both directions. It is assumed here that
the two maters exist in a black hole (the space dual of a vacuum). Thus, a lower bound lifespace penalty of

AN = LSP = ‘ TR2 - TI;‘ / ¢, governs the gravid retention where A/V denotes a retention-entropy change. Finally in Fig.

4H expressions for the gravidness pressure f,'“> acting on m,and due to the gravidness field G, in

R
Viscosity/(Joule.meter’) units, of m; are given. These space dual expressions surface naturally from UNBH conditions

where a special note is made of the fact that the denominator of the gravidness field G}2 is inversely proportional to the

absolute value of the time-dislocation between the two maters, i.e., 7D = TR2 - T;; , taken to a power of 4/3 rather than
the power of two for space-dislocation as occurs in the motion case. The derivation of this result begins with the
assumption that there are two point ‘motion’ masses in the UNBH. One is the motion-mass mzlw which is modeled as a

point mass residing in the center of the UNBH and the other motion-mass mjl residing just inside the event horizon. The

motion-gravitation force expressions of Fig. 4D are then used to yield £ =6Mm;4m; /r; where ry is the

retention radius of the UNBH. Then dividing this expression by the surface area 4 of the UNBH and using the mass-
mater duality expression me = (c]@ /cp )m f{H and cp=Ty/Vy for a UNBH the expressions of Fig. 4H surface.

Refer to Fig. 5 where Coulomb’s electrical law is displayed in its space-time duality in physics field form. In
Fig. SA-D the motion-electrical law case is shown and in Fig. SE-H its space dual, i.e., the retention-exalted law, is
displayed. In Fig. SC massless but energetic photons speeding at the speed of light thru a vacuum are displayed that
carry the electric field in both directions. In Fig. SE-F the space dual of two motion-charges, i.e., the retention-clogs q;e

and qfe, are shown that share the same retention-space Si. In Fig. 5G the corresponding time-dislocation model is shown
with materless but viscositic retention-portages (the space dual of a motion-photon) pacing at the pace of dark in a
black hole are displayed that carry the retention-exalted field (the space dual of the motion-electrical field) in both
directions. In Fig. SH the retention-exalted law is shown and is derived using a similar approach as that suggested earlier
to derive the retention-gravidness law of Fig. 4H. Furthermore, when deriving this law the charge-clog duality
relationship ¢, = (ci[ /¢y )q ,, must be used which is found using black hole conditions, as done earlier to derive the

mass-mater duality equation m, = (cfl /¢y )m 4 - Finally it is noted that similarly to the Gg of Fig. 4H the retention-
exalted field Eg, in Viscosity.sec’/(C.meter’) units, of Fig. 5H is inversely proportional to the absolute value of the
retention time-dislocation 7D =T, R2 -T Rl raised to a 4/3 power.

4.4 The Retention Weave-Pellet Duality

Refer to Fig. 6 where the motion wave-particle duality and its space dual are shown. In Fig. 6A the motion-
frequency fj, is displayed in motion-wave Z,, field cycles per second while in Fig. 6C the space dual retention-fix f; is
shown in retention-weave (the space dual of a motion-wave) Zj field cycles per cubic meter. Examples of Z,, are the
motion-electric E;; and motion-magnetic B, fields of a motion-electromagnetic motion-wave while examples of Zy are
the retention-exalted E; and retention-mesmeric By fields of a retention-exaltmesmeric retention-weave to be defined
shortly. Also in Fig. 6A the motion-wavelength A,,is given in space-dislocation per motion field cycle while in Fig. 6C
the retention-weavelength A is given in time-dislocation per retention field cycle. In addition, in Fig. 6A the relation
cy=fuAn for massless motion-photons and motion-gravitons is shown while in Fig. 6C the space dual relation czg=fzAz for
materless retention-portages and retention-gravids is given. Also, in Fig. 6A the motion wave-particle duality
expressions are shown relating p,, and E), to Ay, and fy, respectively, via the motion Plank’s constant /,, while in Fig.
6C the retention weave-pellet duality expressions are shown relating pr and Ex to Az and fz, respectively, via the space
dual of Plank’s constant /. Furthermore, in Fig. 6C motion-retention duality relationships between the p, E, 1 and f are
advanced where the one half quantum motion-retention duality hz=h,,/2 is highlighted. This quantum duality relationship
was found via the Margulus-Leviton theorem [6] expression T, E,, = 7 ,, /2 where Ej is the minimum average energy
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needed for a particle’s spin up or down state to remain no longer than the retention-time 7. Thus since Az is the same as
the time-dislocation per retention field cycle, i.e., a spin up followed by a spin down for this case, it then follows that
Ar=2Tx, which when substituted in 7, E,, = 7#i,, /2 yields the desired result A,E, =7h, =h, /2=A,pp, =h,.In
Fig. 6B the De Broglie wave-particle relations for particles with or without mass is shown while in Fig. 6D the retention
weave-pellet relation for pellets with or without mater is given. Finally the frequency-fix duality
relation f, = (h,, /h,) f,,c,of Fig. 6C has an interesting interpretation. It is that it relates the Hawking

frequency £/ = ¢3, /162G, m?" of the radiation energy (positive and negative) of a virtual particle pair, where one particle
moves into and one moves out of the black hole at the event horizon, to the fix ¢ = (n,, /h,)fc,0f the retention-
ramification (the space dual of motion-radiation) viscosity (positive and negative) of the space dual of a virtual particle

pair, i.e., a virtual pellet pair, where one pellet is retained into and the other is retained out of the black hole at the event
horizon. In future publications more will be said about the interactions between virtual particle and virtual pellet pairs.

4.5 The Retention Quantum Mechanics and the Retention Uncertainty Principle

Refer to Fig. 7 where Schrodinger’s quantum mechanics and Heisenberg’s uncertainty principle relations are
displayed in their space-time duality in physics form. In Fig. 7A KE,, PE), and E,, denote the motion kinetic energy,
potential energy and total energy of a particle while in Fig. 7C KEy, PE and Ey denote the kinetic viscosity, potential
viscosity and total viscosity of a pellet. Also while PE), is a function of the motion-space location of a particle, PEy is a
function of the expected retention-time of a pellet. Furthermore, while the squared magnitude of the motion wave

WV u

retention weave function y,, ie., ‘z// 2

functiony,, , i.e., ’ , inform us about the probability of finding a particle at some sy, the squared magnitude of the

?, inform us about the probability of finding a pellet with some expected

retention-time 7%. On the other hand, the space-momentum uncertainty principle expression As, Ap,, =%, /2 and the
‘motion’ time-energy uncertainty principle Az, AE,, >#,, of Fig. 7B have as a space dual the ‘retention’ time-energy
uncertainty principle expression AT,Ap, 2h,/2 and the space-viscosity uncertainty principle expression
AS,AE, 2, of Fig. 7D, respectively. Finally, in Fig. 8A the relativistic motion quantum mechanics expression for a

free (PE)~0) mass is shown while in Fig. 8B the space dual relativistic retention quantum mechanics equations for a free
(PEr=0) mater is presented. Finally, it is noted that the duality expressions of Figs. 7-8 are connected via hz=5,/2.

4.6 The Retention-Hefty and the Retention-Mesmeric Laws

In Fig. 9 the motion-heaviside and its space dual, i.e., the retention-hefty, laws are given. On the other hand, in
Fig. 10 the motion magnetic and its space dual, i.e., the retention-mesmeric, laws are depicted. From these two figures it
is noted that these laws are associated with motion rotations and retention rotations of masses, maters, charges and clogs.
The derivation and discussion of these results will be given in a later publication due to space limitations of the current
manuscript. It is noted, however, that the hefty field Hr and the mesmeric field By are also, as expected, inversely

proportional to the absolute value of TD =T R2 — T, raised to a 4/3 power.

4.7 The Retention-Gravidhefty and the Retention-Exaltmesmeric Equations

In Fig. 11A-B the motion-gravitoheaviside equations and the motion-electromagnetic equations (Maxwell’s
equations) are shown. In Fig. 11C-D the retention-gravidhefty equations and the retention-exaltmesmeric equations are
depicted. The derivation and discussion of these results will be given in a later publication due to space limitations of the
current manuscript.
4.8 The Retention-Gravidhefty and the Retention-Exaltmesmeric Weaves

In Fig. 12A-B the motion-gravitoheaviside wave equations and the motion-electromagnetic wave equations are
shown. In Fig. 12C-D the retention-gravidhefty weave equations and the retention-exaltmesmeric weave are displayed.
The derivation and discussion of these results will be given in a later publication due to space limitations of the current
manuscript.
4.9 The Motion General Relativity and the Retention General Relativity Equations

The general relativity case will be addressed in a later publication.
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4. CONCLUSIONS

The discovery of the space dual of the laws of motion in physics has been reported in this paper and named the
laws of retention. In the laws of motion domain knowledge motion is modulated by electromagnetic and
gravitoheaviside fields carried by massless photons and gravitons, respectively, while in the novel laws of retention
domain knowledge retention is modulated by exaltmesmeric and gravidhefty fields carried by materless portages and
gravids, respectively. The new laws of retention in physics should bring to a recognition system’s study, design and
implementation a level of sophistication that rivals that presently applied to a communication system’s study, design and
implementation. In addition, the integrated use of motion and retention laws in latency-information theory (LIT)
problems should offer the possibility of deriving synergistic solutions to complex theoretical as well as practical
problems. Two novel performance bounds were also introduced. One was motion-ectropy, which advances a lower
bound for the lifetime penalty suffered by knowledge due to a motion-space location change or space-dislocation, while
the other was retention-entropy, which advances a lower bound for the lifespace penalty suffered by knowledge due to a
retention-time interval change or time-dislocation. Novel concepts of particular interest that have surfaced are those of
fix and weavelength which are the retention duals of frequency and wavelength, respectively, in motion. These new
concepts are of primary interest since they are expected to play a role in recognition systems that emulate that of
frequency and wavelength in the study, design, and implementation of modern communication systems. Clearly since
the laws of retention is one of the two pillars of the newly discovered space-time duality in physics they promise to have
general applicability and also to propel us towards a better understanding of our physical world. Such duality may
conceivably address in a rather straight forward manner relevant theoretical questions in physics such as the
development of a satisfactory quantum gravity theory as well as the advancement of more reliable predictions about
future technology. It is also hoped that in the more general context of LIT, from which it inherently surfaced, the newly
discovered space-time duality in physics can serve as a valuable pedagogical tool for superior investigations and
guidance of existing and/or to be designed and implemented complex systems.
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APPENDIX A

On the Derivation of the Pace of Dark from UNBH Conditions

The derivation begins with a black hole’s power radiation expression
BH dEzﬁH U 2 dm/ﬁ[H (7y)
P/ (ty)=——"—""=——Cyy——— (A1)
dt,, dt,,
where Pf;H (t,,) is the power radiation (the subscript of M for ‘motion’ will be used with physical variables that are
normally used in the laws of motion in physics definitions [1], [6] while the subscript R for ‘retention’ will be used with

physical variables that are defined for the laws of retention in physics of this paper) and Ef,H (t,,)and mf,H (t,/) are
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the energy and mass of a UNBH [6] at the instant of time #,. Pf;H (¢,,) is then noted to be equal to a ‘black body’
luminance L% (t,,) resulting in the expression
BH BH 27 4 302 BH 4
PY ()= L (t,)) = (z*k’, 1601°,¢2) A, (T2 (¢,,)) (A2)

where k,, is Boltzmann’s constant, 7 v 18 Plank’s reduced constant, cy is the speed of light and /27 (¢,,) is the

temperature of a UNBH: the radiation frequency of the black body, or equivalently Hawking’s radiation frequency
fi,,) for a black hole, is related to '27(¢, ) via the expression £ (¢, )=k, T2 (t,)/2h,, . In addition, A is the

surface of the UNBH retention sphere. Next it is noted that T2 (¢,,) is given by the reciprocal of the rate of change of

the UNBH thermodynamic entropy S+ (,,) with respect to Er (t,,) where the S (¢,,) is given by the
Hawking entropy [6]. Thus

T2 () =082 (t,)/0E (t,,)) (A3)
So(t,,) —4];;4—(2;14 : Hawking’s entropy (A4)

Next using Schwarzschild’s radius in the expression for 4z in (A.4) and then replacing mﬁH (t,,) with its energy

equivalence one obtains the following expression for S+ (¢,,) as a function of Er (¢,,):

3 3 BH 2
S§BH (4 ) = kyCy 4 = kymy | 2Gymy (1)) k 4G\, (EBH p ) AS
v )= G TG . h C) A
MYy mYum Cu wC
Next using (A.5) in the evaluation of (A.3) one finds
hoc
Lo ()= A (A.6)
BH
87y Gy (£yy)
Using (A.6) in (A.2) and equating the result with (A.1) the following nonlinear differential equation is derived
am? (t h,c

u () + — =0 (A7)

2
dty,  153602G2 (m™ (t,))
The solution to this differential equation then yields the following analytical result
3 i \F 4 2
(m2 t,)) = (w2 i) =, ety 151202G2) e, (AS)
where mﬁH (tzlvz) is the initial UNBH mass. One then sets expression (A.8) to zero to find the final time tz\f4 when the
black hole ends its existence, i.e.,

- 51h207ZG (m?

" (1) =

2 3 2
51207G;, ( ci,7y _ 6407, ( )3 480c;, v, (A9)
MM hMcM

= r
2G,, h,G, : n, G,

where r and V; are the retention radius and volume, respectively, of the UNBH at the initial time of t! - The expected
retention-time 7% for the UNBH is then given by the expression

T, =t —t\, =(480c;, 1, G, )V, -ti, (A.10)
Ve =4n(r, ) 13=4702G,m" ()¢, ) 13 = 472G, EX ()1 ¢}, ) 13 (A1)

The rate of change of expected retention-time 7% with respect to the retention-space V% is then derived from (A.10) to
give us the sought after pace of dark ¢z for a UNBH, i.e.,

c, =dT,/dV, =480c;, 11, G, =T, +t,,)/V,. (A.12)
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Table 1. A) Newton’s Principia; B) The Retention-Principia

A

B

ty: motion-time (or lifetime) in sec units

Sg: retention-space (or lifespace) in meter” units

S/ Motion-space in meter units

Tr: retention-time in sec units

vy. motion-velocity in meters/sec units

Vvg: retention-tempo in sec/meter’ units

by: motion-speed in meters/sec units

bg: retention-pace in sec/meter’ units

a,s: motion-acceleration in meters/sec’ units

ay: retention-escalation in sec/meter® units

my,. motion-mass in kg units

mpg: retention-mater in kgR=Joule.meter3/sec units

P motion-momentum in Newtons.secs units

pr: retention-energy in Joule units

fir: motion-force in Newtons units

fz: retention-pressure in Pascal units

KE). kinetic motion-energy in Joule units

KER: kinetic retention-viscosity in Viscosity units

W,. motion-work in Joule units

Wk: retention-effort in Viscosity units

v, =ds, /dt, vy =dT, /dS,
by =[] b = Vil
a, =dv, /dt, a, =dv, /dS,
Py =MyVy Pr = MpVp
fy =dp,, /dt, fr=dpp/dS,

KE,, = p;, /12m,

KE, = p./2m,

Wy = L:fM (5 )ds

Ti
Wy =JT’% fR (TR )dTR

Table 2. A) Additional Motion Terminology; B) Retention Space Dual Terminology

A

B

Motion-Gravitational

Retention-Gravidness

Motion-Electrical

Retention-Exalted

Motion-Heaviside

Retention-Hefty

Motion-Magnetic

Retention-Mesmeric

Motion-Frequency

Retention-Fix

Motion-Wave

Retention-Weave

Motion-Wavelength

Retention-Weavelength

Motion-Particle

Retention-Pellet

Motion-Radiation

Retention-Ramification

Motion-Photon

Retention-Portage

Motion-Graviton

Retention-Gravid

Motion-Charge

Retention-Clog
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Fig. 3 A-C) Motion Special Relativity; D-F) Retention Special Relativity
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Fig. 9 A-D) The Motion-Heaviside Law; E-H) The Retention-Hefty Law
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Fig. 10 A-D) The Motion-Magnetic Law; E-H) The Retention-Mesmeric Law
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Fig. 11 A) The Motion-Gravitoheaviside Equations; B) The Motion-Electromagnetic Equations;
C) The Retention -Gravidhefty Equations; D) The Retention-Exaltmesmeric Equations
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Fig. 12 A) The Motion-Gravitoheaviside Waves; B) The Motion-Electromagnetic Waves;
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