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 Abstract --- Minimum mean squared error (MMSE) 
predictive-transform (PT) source coding is integrated with 
subband compression to further improve the performance of 
low bit rate MMSE PT source coders. A desirable byproduct of 
the advanced scheme is that the incorporation of joint optimum 
prediction and transformation from subband to subband is 
ideally suited to its integration with JPEG2000 to yield even 
higher compression levels while producing an outstanding 
objective as well as subjective visual performance.  
 

I.  INTRODUCTION 
Recently it was shown that wavelets based JPEG2000 [1] 
can yield remarkably ‘poor’ results when applied to 
synthetic aperture radar (SAR) images [2] that are being 
used in knowledge-aided airborne moving target indicator 
(AMTI) radar applications [5]. To demonstrate these 
surprising results a very simple strip-processor minimum 
mean squared error (MMSE) predictive-transform (PT) 
source coder was used [2]. The reason for JPEG2000’s poor 
performance, more than 5 dBs worse for the SAR image 
under test [5], may be traced to the significant difference in 
correlation between adjacent horizontal and adjacent vertical 
pixels found in typical SAR images. Fortunately PT source 
coding offers a very simple solution to this problem. This is 
the case since its optimum design of prediction and 
transformation matrices in a flexible pixel geometry 
processing environment explicitly takes into consideration 
the vastly different horizontal and vertical pixel correlations. 
In addition, there are now available fast on-line PT 
implementation algorithms that are based on even/odd 
eigenvector decompositions [4] and/or Hadamard structures 
[6]. However, for standard images such as those given in the 
JPEG suitcase as well as the Lena image it has been found 
that JPEG2000 performs satisfactorily. This is due to the use 
of subband coding that produces an exceptionally appealing 
objective and subjective visual performance when the 
correlation between adjacent horizontal and adjacent vertical 
pixels does not vary significantly, as is the case for this type 
of images. On the other hand, the current predictive-
transform strategy still needs to be refined to yield results 
that are significantly superior to those of JPEG2000 when 
compressing images such as those found in the JPEG 
suitcase. However, since JPEG2000 does not use prediction 
from subband to subband it stands to reason that the  
structural flexibility  of  MMSE  PT  source  coding  may  be 
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transported to subband coding to achieve even better results. 
This is the problem that is addressed in this paper for which 
very promising preliminary results are advanced. 
 
 The rest of this manuscript is presented in two 
sections. In Section II the pre-requisite PT source coding 
background material is given and in Section III the proposed 
integration of MMSE PT source coding with subband 
compression is advanced along with future research ideas.  
 

II. BACKGROUND 
In Fig. 1 the overall PT source coder architecture is shown. 
It has as its input the output of a signal source y. As an 
illustration this output will be assumed to be a real matrix 
representing 2-D images. The structure consists of two 
distinct sections. In the upper section the lossy encoder and 
associated lossy decoder are depicted while in the lower 
section the lossless encoder and decoder are shown.  The 
lossless section of the coder is explained in detail in [2] and 
will not be discussed here since it is generally different from 
that used in subband compression [1]. In Fig. 2 the lossy PT 
encoder structure is shown. It consists of a transform pre-
processor fT(y) whose output xk is a real n dimensional 
column vector. In Fig. 3 an image illustration is given where 
y is a matrix consisting of 64 real valued picture elements or 
pixels and the transform pre-processor produces sixteen n=4 
dimensional pixel vectors {xk:k=1,…,16}.  The pixel  vector  
 

 
Fig. 1 The PT Source Coder Architecture 
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Fig. 2 Lossy PT Encoder Structure 

 
xk then becomes the  input of an nxn dimensional unitary 
transform matrix T. The multiplication of the transform 
matrix  T  by the pixel vector xk produces an n dimensional 
real valued coefficient column vector ck. This coefficient, in 
turn, is predicted by a real n dimensional vector ĉ k/k-1. The 
prediction vector ĉ k/k-1 is derived by multiplying  the  real  m 
 

    
Fig. 3 Image Coding Illustration:Transform Pre-Processing 

dimensional output zk-1 of a predictor pre-processor 
(constructed using previously encoded pixel vectors as will 
be seen shortly), by a m x n dimensional real prediction 
matrix P. A real n dimensional coefficient error δck is then 
formed and subsequently quantized yielding δ ĉ k. The 
quantizer has two assumed structures. One is an “analog” 
structure that is used to derive analytical design expressions 
for the P and T matrices and another is a “digital” structure 
used in actual compression applications. The analog 
structure consists of allowing the  most energetic elements of 
δck to pass to the quantizer output unaffected and the 
remaining elements to appear at the quantizer output as zero 
values, i.e., 
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The digital structure consists of multiplying δck by a real and 
scalar compression factor ‘g’ and then finding the closest 
integer representation for this real valued product, i.e., 

 2/1ˆ += kgk cc δδ .                   (2.2) 

The quantizer output δ ĉ k is then added to the prediction 
coefficient ĉ k/k-1 to yield a coefficient estimate ĉ k/k. Although 
other types of digital quantizers exist [3] the quantizer used 
here (2.2) is the simplest one to implement and yields 
outstanding results as seen in our simulations [2]. The 
coefficient estimate ĉ k/k is then multiplied by the 
transformation matrix T to yield the pixel vector estimate 

kk /x̂ . This estimate is then stored in a memory which 

contains the last available estimate ŷ k-1 of the pixel matrix 
y. Note that the initial value for  ŷ k-1, i.e.,  ŷ 0,  can  be  any  
reasonable  estimate  for  each pixel. For instance, since the 
processing of the image is done in a sequential manner using 
prediction from pixel block to pixel block, the initial ŷ 0 can 
be constructed by assuming for  each  of  its  pixel  estimates  

  
  Fig. 4 Image Coding Illustration: Prediction Pre-Processing 
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the average value of the pixel block x1. Fig. 4 shows for the 
illustrative example how the image estimate at processing 
stage k=16, i.e., ŷ k-1= ŷ 15, is used by the predictor pre-
processor to generate the pixel estimate predictor pre-
processor vector z15. Also note from the same figure how at 
stage k=16 the 4 scalar elements )ˆ,ˆ,ˆ,ˆ( 87776757 yyyy of the 

8x8 pixel matrix ŷ 15 are updated making use of the most 

recently derived pixel vector estimate 15/15x̂ . Next the 
design of the T and P matrices of the PT source coder is 
reviewed. 
 The design equations for the T and P matrices are 
derived by minimizing the mean squared error expression 

)]ˆ()ˆ[( // kkk
t

kkkE xxxx −−                (2.3) 
with respect to T and P and subject to three constraints. They 
are: 
 1) The elements of δck are uncorrelated from each 
      other. 
 2) The elements of δck are zero mean. 
 3) The analog quantizer of (2.1) is assumed. 
After this minimization is performed coupled Wiener-Hopf 
and Eigensystem design equations are derived [4]. They are: 
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where these expressions are a function of the first and 
second order statistics of xk and zk-1 including their cross 
correlation. To find these statistics the following isotropic 
model for the pixels of y can be used [4]: 
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where v and h are integers, K is the average value of any 
pixel, Pavg is the average power associated with each pixel, 
and r is a constant that reflects the relative distance between 
two adjacent vertical and two adjacent horizontal pixels (r 
=1 when the vertical and horizontal distances are the same). 
 
 In Fig. 5 the lossy PT decoder is shown and is 
noted to be identical in structure to the feedback section of 
the encoder section of Fig. 2. Next we adapt the 
aforementioned predictive-transform methodology to the 
subband memory space compression of images. 
 
III. SUBBAND PREDICTIVE –TRANSFORM SOURCE CODING 

 
The proposed scheme is next advanced by considering in 
detail a simple example that integrates the PT source coding  

 
Fig. 5 Lossy PT Decoder 

 
scheme with the wavelets JPEG2000 subband approach. 
More specifically, we consider the compression of the 4x4 
dimensional image depicted in Fig. 6 where y(i,j) denotes a 
pixel with the order pair (i,j) conveying the spatial location 
of the pixel. 
 
 The subband PT (SPT) algorithm begins with the 
evaluation of the average value x0 of the given image 
{y(i,j)}, i.e.,  
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This average value can be encoded with 8 bits.  
 
 Next the first subband is encoded as shown in Fig. 
7. The picture contains three large squares where in each 
case it is internally made up of four smaller squares. The 
first large square to discuss is the one located on the lower 
left hand side of the image.  It  contains  four  scalar  average  
 
 
 
 
 
       
 
 
 
 
 
 
 
 
 
 
                          Fig. 6  The Original 4x4 Image 
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ŷ

,...}2,1:ˆ{ =kkcδ

1-kŷ
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Fig. 7 First Subband Predictive-Transform Pass 
 
values }2,1&2,1:{ ,

1 == lkx lk  where lkx ,
1 denotes the 

average value of four adjacent pixels, i.e., 

∑ ∑
−= −=

=
k

ki

l

lj

lk jiyx
2

12

2

12

,
1 ),(

4

1
                (3.2) 

These four values are in turn collected into the 4 
dimensional column vector x1, i.e., 

txxxx ]       [ 2,2
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This vector is then multiplied by a 4x4 unitary transform 
matrix T to generate the coefficient vector c1, i.e., 

11 xc tT= .                               (3.4) 

Clearly, when this transformation matrix is the Hadamard 
transform we have the standard wavelets JPEG2000 
approach [1]. The second large square to investigate is 
placed on the upper left hand side of the image. It displays 
the predicted values for the four pixel averages (3.3). These 
predicted values are denoted by the set of four scalar 

elements }2,1&2,1:ˆ{ ,
0/1 == lkx lk  where ‘all’ of these 

elements are given the same value of x0 which is, as 
mentioned earlier, the average value of the entire image 
(3.1). It then follows that our prediction vector for the 
transform coefficients is defined by the expression  
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The prediction vector z0 is then multiplied by a 4x4 
prediction matrix P resulting in the prediction coefficient 
vector 0/1ĉ , i.e., 

00/1ˆ zc tP=                         (3.6) 
Next the design of T and P is addressed by using the 
isotropic image correlation model (2.7)-(2.10) with the real 
constant value of ‘s’ added to 22)( hrv + .  This is done to 
reflect the fact that the prediction (3.5) and predicted (3.3) 
averaged pixels are derived from the same pixel space but 
are extracted from different subband passes. Furthermore, 
assigning 0.99999 to both ρ and r, and using any value for 
K, the following T and P realizations are obtained when s=4: 
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Notice that the transform matrix (3.7) is the Hadamard 
transform [1]. However, this will not be the case in general 
when using a different averaged pixel block size. The 
difference between the coefficient vector c1 and its predicted 
value 0/1ĉ  then results in the 4 dimensional coefficient error 

or innovation δc1, i.e., 
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The four elements of δc1 are depicted on the third large 
square located on the right hand side of Fig. 7. Note that 
attached to each of these coefficients errors is a background 
square with its shading representing the 2D drawing of the 
associated eigenvector that is extracted from the transform 
matrix (3.7). For instance, the shading associated with the 
coefficient 1,1

1
cδ  element is uniform in appearance since it 

corresponds to the DC eigenvector shown on the first 
column of the Hadamard transform (3.7). 
 Next, the coefficient error is quantized [1] yielding 
the quantization coefficient error 1ĉδ , i.e.,  
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The prediction coefficient vector 0/1ĉ is then added to the 

quantized coefficient error 1ĉδ to yield the estimated 

coefficient vector 1/1ĉ , i.e., 

10/11/1 ˆˆˆ ccc δ+= .                   (3.11) 
The estimated coefficient vector is then multiplied by the 
Hadamard transform (3.7) to yield an estimate 1/1x̂ , i.e., 
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of the ‘first’ subband average pixel values x1 (3.3). This 
completes the first subband pass of the 4x4 pixel image of 
Fig. 6. 
 
 The description of the second and last subband pass 
of the proposed algorithm begins with an explanation of Fig. 
8. As with Fig. 7, this figure is characterized by three large 
squares. In turn each of these large squares consists of four 
identical sub-squares where each sub-square in conjunction 
with the corresponding sub-squares of the other two large 
squares can be explained similarly as was done earlier for 
the first subband pass. Furthermore, the required processing 
associated with each sub-square case will be found later to 
be perfectly independent of any processing pertaining to the 
remaining three sub-square cases. Thus parallelism can be 
used to yield a processing speed for this second subband 
pass  that  is  governed  by  that  of   anyone  of  the identical 
 

 
 

Fig. 8 Second Subband Predictive-Transform Pass 
 
 

sub-squares. The defining processing expressions for any 
sub-square case are next discussed in detail. 
 
 As was the case for the first subband pass the 
discussion begins with the large square located on the lower 
left hand side of the figure. Its four sub-squares, as is also 
the case for the other two large squares, are differentiated 
from each other by the order pair set (k,l), i.e.,  
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as seen from the picture. For each (k,l) sub-square case the 
following 4 dimensional column vector x2(k,l) is then 
defined 
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This vector is then multiplied by the Hadamard transform 
matrix T to generate the coefficient vector c2(k,l), i.e., 

),(),( 22 lkTlk t xc = .                      (3.16) 

The second large square on the upper left hand side of the 
image displays the prediction vector  
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for the four pixels in (3.14). Note that all the elements in the 
prediction sub-square (k,l) are predicted with the same 

identical scalar value lkx ,
1/1ˆ  that is available from the first 

subband pass. It now follows that our prediction vector for 

the transform coefficient vector ),(2 lkc  is defined by the 

expression  
),(ˆ),( 1/21 lklk xz = .                 (3.18) 

The prediction vector z1(k,l) is then multiplied by the 4x4 
prediction matrix P resulting in the prediction coefficient 
vector 1/2ĉ (k,l), i.e., 
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The difference between the coefficient vector c2(k,l) and its 
predicted value ),(ˆ 1/2 lkc  then results in the 4 dimensional 

coefficient error or innovation δc2(k,l), i.e., 
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that is plotted in the third large square of Fig. 8. This 
coefficient error is then quantized to yield the quantized 
coefficient error 

)),((),(ˆ 22 lkQlk cc δδ = .                 (3.21) 

 A coefficient estimate ),(ˆ 2/2 lkc  of the coefficient 

vector ),(2 lkc  is then obtained by adding the predicted 

coefficient vector to the quantized coefficient error to yield 

),(ˆ),(ˆ),(ˆ 21/22/2 lklklk ccc δ+=           (3.22) 

 Finally an estimate of the pixels (3.14)-(3.15) 

),(ˆ 2/2 lkx  is derived by multiplying the coefficient estimate 

(3.22) by the Hadamard transform to yield 

),(ˆ),(ˆ 2/22/2 lklk Tcx = .               (3.23) 

This concludes the subband PT source coding methodology 
that can be readily extended to arbitrary size images. 
 In Fig. 9 the quantized ‘coefficient errors’ are 
displayed using the standard subband display [1]. Clearly, 
when the aforementioned prediction mechanism presented in 
(3.9) and (3.20) is inhibited the classical wavelets structure 
is derived which consists of quantized ‘coefficients’ as 
shown in Fig. 10.  
 Next in Figs. 12 the result is shown when the Lena 
image of Fig. 11 is highly compressed. Seven subbands were 
used where the prediction of each 2x2 pixel block was 
performed using ‘nine’ 2x2 constant pixel block estimates 
derived from the previously encoded subband as seen from 
Fig. 13. The corresponding transform matrix T for this 
scheme was once again the Hadamard transform of (3.7) and 
for the prediction matrix P the following 36x4 matrix was 
derived  
 
                   P =   0.0257   -0.0070    0.0076   -0.0027 

0.0170   -0.0093    0.0050   -0.0039 
0.0273   -0.0158    0.0041   -0.0032 
0.0273   -0.0158   -0.0033    0.0024 
0.0170   -0.0093   -0.0046    0.0034 
0.0257   -0.0070   -0.0069    0.0019 
0.0170   -0.0047    0.0097   -0.0039 
0.0335   -0.0210    0.0217   -0.0152 
0.0802   -0.0508    0.0222   -0.0165 
0.0802   -0.0508   -0.0199    0.0139 
0.0335   -0.0210   -0.0208    0.0141 
0.0170   -0.0047   -0.0092    0.0034 
0.0274   -0.0034    0.0165   -0.0033 
0.0803   -0.0204    0.0527   -0.0165 
0.1917   -0.0541    0.0585   -0.0225 
0.1917   -0.0541   -0.0532    0.0163 
0.0803   -0.0204   -0.0505    0.0140 
0.0274   -0.0034   -0.0158    0.0024 
0.0274    0.0034    0.0158    0.0024 
0.0803    0.0204    0.0505    0.0140 
0.1917    0.0541    0.0532    0.0163 

 
 
Fig. 9 Coefficient Error Arrangement Using Standard Subband 
Organization 
 

 
 
Fig. 10 Coefficient Arrangement Using Standard Subband 
Organization 
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0.0170    0.0047    0.0092    0.0034 
0.0335    0.0210    0.0208    0.0141 
0.0802    0.0508    0.0199    0.0139 
0.0802    0.0508   -0.0222   -0.0165 
0.0335    0.0210   -0.0217   -0.0152 
0.0170    0.0047   -0.0097   -0.0039 
0.0257    0.0070    0.0069    0.0019 
0.0170    0.0093    0.0046    0.0034 
0.0273    0.0158    0.0033    0.0024 
0.0273    0.0158   -0.0041   -0.0032 
0.0170    0.0093   -0.0050   -0.0039 
0.0257    0.0070   -0.0076   -0.0027 
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2ĉ

2,1
1̂c

2,2
1̂c1,2

1̂c

 
 
 
 

 

  

 1,1
1̂cδ )1,1(2,1

2ĉδ
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       Fig. 11  The original Lena image 

 

 
 

 Fig. 13  Prediction geometry from nine 2x2 constant pixel block 
estimates  in ith subband to 2x2 pixel block in (i+1)th subband 

 
 
 The PSNR of the MMSE PT compressed Lena 
image of Fig. 12 is 29.51 dBs and the number of bytes 
needed for its storage is 3,395 bytes which in JPEG2000 
produces a compressed Lena image with PSNR of 28.84 
dBs. The aforementioned number of bytes was achieved 
using a subband version of the straightforward bit planes 
methodology introduced in [2]. Nonlinear quantizers were 
applied to the last subband coefficient errors where gaussian 
distributions were assumed for them. In addition, the linear 
quantizer of (2.2) with g = 0.025 was used for the remaining 
subbands. Notice the acceptable visual image quality derived 
for  such  a  high  level   of   compression.   Clearly  a  better  

 
           Fig. 12  MMSE PT compressed Lena image    

 
 

perceptual image quality as well as a greater compression 
level may  be  achieved  with  the   use  of  nonlinear 
quantizers for all subbands and/or some appropriate type of 
post-processing. 

 The best  image  isotropic  model parameter ‘s’ 
value to use for each possible level of compression and/or 
subband remains to be investigated. In addition, it is noticed  
that the proposed methodology can be readily applied to any 
averaged pixel  block  size  processing  structure which 
naturally includes that of a strip processor [2]. This problem 
is being investigated and further results will be forthcoming 
in the near future. 
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